

COMPUTER ARCHITECTURE

Ronald A. Thisted
Departments of Statistics, Health Studies, and Anesthesia & Critical Care

The University of Chicago

7 April 1997

To appear, Encyclopedia of Biostatistics.

A computer architecture is a detailed specification of the computational, communication,
and data storage elements (hardware) of a computer system, how those components interact
(machine organization), and how they are controlled (instruction set). A machine’s archi-
tecture determines which computations can be performed most efficiently, and which forms
of data organization and program design will perform optimally.

The term architecture as applied to computer design, was first used in 1964 by Gene
Amdahl, G. Anne Blaauw, and Frederick Brooks, Jr., the designers of the IBM System/360.
They coined the term to refer to those aspects of the instruction set available to programmers,
independent of the hardware on which the instruction set was implemented. The System/360
marked the introduction of families of computers, that is, a range of hardware systems all
executing essentially the same basic machine instructions.

The System/360 also precipitated a shift from the preoccupation of computer designers
with computer arithmetic, which had been the main focus since the early 1950s. In the 1970s
and 1980s, computer architects focused increasingly on the instruction set. In the current
decade, however, designers’ main challenges have been to implement processors efficiently, to
design communicating memory hierarchies, and to integrate multiple processors in a single
design.

It is instructive to examine how this transition from concentrating on instruction sets to
high-level integration has taken place.

Instruction-set architecture
In the late 1970s, statisticians often had to be skilled FORTRAN programmers. Many

were also sufficiently conversant with assembly language programming for a particular com-
puter that they wrote subprograms directly using the computer’s basic instruction set.

The Digital VAX 11/780 was a typical scientific computer of the era. The VAX had over
300 different machine-level instructions, ranging in size from 2 to 57 bytes in length, and 22
different addressing modes. Machines such as the VAX, the Intel 80x86 family of processors
(the processors on which the IBM PC and its successors are based), and the Motorola 680x0
processors (on which the Apple Macintosh is based) all had multiple addressing modes,
variable-length instructions, and large instruction sets. By the middle of the 1980s, such
machines were described as “complex instruction-set computers” (CISC). These architectures
did have the advantage that each instruction/addressing-mode combination performed its
special task efficiently, making it possible to fine-tune performance on large tasks with very
different characteristics and computing requirements.

In CISC computers, 80% or more of the computation time typically is spent executing

1

only a small fraction (10–20%) of the instructions in the instruction set, and many of the
cycles are spent performing operating system services. Patterson and Ditzel [3] proposed
the “reduced instruction-set computer” (RISC) in 1980. The RISC idea is to design a small
set of instructions which make implementation of these most frequently performed tasks
maximally efficient. The most common features of RISC designs are a single instruction
size, a small number of addressing modes, and no indirect addressing.

RISC architectures became popular in the middle to late 1980s. Examples of RISC
architectures include Digital’s Alpha processor family, Hewlett-Packard’s PA series, the Mo-
torola/Apple/IBM PowerPC family, and Sun’s Ultra-SPARC family. RISC architectures
are particularly suitable for taking advantage of compiler-based optimization, which means
that programs such as computationally-intensive statistical procedures written in compiled
languages are likely to see best performance in RISC environments.

The operating system for a computer is a program that allocates and schedules the com-
puter’s computational resources such as processors and memory. For instance, the operating
system controls how much of the computer’s main memory is available to programs and how
much is used to cache portions of files being read from or written to disk storage. Operating
systems also determine which programs will be processed at any given time, and how long
the processor will “belong” to the program currently claiming it. Computers such as the
VAX and System/360 were designed in conjunction with an architecture-specific operating
system (VMS and OS/360, respectively). Indeed, until the late 1980s, most operating sys-
tems were written specifically for computers with a particular architecture, and only a small
number of these operating systems were ever converted to control machines based on other
designs.

Early RISC architectures were designed to make Unix operating systems perform effi-
ciently, and today most major Unix-based computer manufacturers rely on a RISC archi-
tecture. However, it is important to note that many different operating systems can run on
a single computer, whether that computer’s architecture is a CISC or a RISC design. For
instance, Unix, Linux, MacOS, Windows NT, OS/2, and other operating systems all have
versions that operate on PowerPC processors. Increasingly, architectures are designed to run
multiple operating systems efficiently, and the most common operating systems do operate
on many different processors. This means that choice of operating system is becoming less
closely tied to the processor family on which a computer is based.

Hardware and Machine Organization
Up to this point we have talked largely about instruction-set aspects of computer architec-

ture. The architectural advances of primary interest to statisticians today involve hardware
and machine organization.

The hardware architecture consists of low-level details of a machine, such as timing
requirements of components, layouts of circuit boards, logic design, power requirements,
and the like. Fortunately, few of these details affect the day-to-day work of statisticians
aside from their consequences — processors continue to get smaller and faster, and memory
continues to get larger and less expensive.

At the level of machine organization, the computers we use are built of inter-dependent
systems, of which the processor itself is just one. Others include memory and memory man-
agement systems, specialized instruction processors, busses for communication within and

2

between systems and with peripheral devices, and input/output controllers. In multiprocess-
ing architectures, the protocols for interaction between multiple processors (the multipro-
cessing control system) is included as well.

In a typical computer based on Intel’s Pentium Pro processor, the processor itself is
tightly linked to a memory cache consisting of synchronous static random access memory
(SRAM). This memory component is very fast, but because it is part of the same chip as the
processor itself, it must also be quite small. This level-one cache memory is the first element
of the Pentium Pro’s memory system. This system in the Pentium architecture consists of
a hierarchy of successively larger (but slower) memory layers: a level-two cache, coupled
to main memory (dynamic RAM, or extended data-out (EDO) DRAM). The main memory
bank is backed up in turn by virtual memory residing on disk; a memory management chipset
(separate from the Pentium processor) controls transactions between these two layers of the
memory system.

Input and output are handled via plug-in slots for processor cards attached to the sys-
tem bus, which also serves the graphics controller. Typically, graphics output has its own,
separate, graphics memory for preparing and displaying the contents of graphics displays.
In addition, the graphics subsystem may incorporate specialized processors that acceler-
ate graphical computations as well as specialized memory modules linked to the graphics
processors.

For most statisticians using a computer on the desktop (or increasingly, on the laptop),
then, improving performance can often be achieved by increasing the amount of level-two
cache memory, by increasing the amount of main memory, by acquiring faster and larger
disk drives, by adding graphics accelerators and graphics memory, or by adding a high-speed
input/output controller.

On more powerful workstation systems, many of these features are integrated directly
on the main processor chip. The UltraSPARC-1, for instance, has the memory management
unit, the floating-point processor, as well as graphics and imaging support on the same chip
as the instruction processor.

Floating-point computation
From the earliest days of digital computers, statistical computation has been dominated

by floating-point calculations. “Scientific computers” are often defined as those which deliver
high performance for floating-point operations. The aspects of computer design that make
these operations possible have followed the same evolutionary path as the rest of computer
architecture.

Early computer designs incorporated no floating-point instructions. Since all numbers
were treated as integers, programmers working with nonintegers had to represent a number
using one integer to hold the significant digits coupled to a second integer to record a scaling
factor. In effect, each programmer had to devise his or her own floating-point representation.
By the 1960s, some designs introduced instructions for floating-point operations, but many
had none. (The IBM 1620 computer, for example, had fixed-precision integer arithmetic,
but the programmer could control the number of digits of precision.) By the mid-1970s,
virtually all scientific computers had floating-point instructions. Unfortunately for the prac-
tical statistician, the representation of floating-point numbers, the meaning of floating point
operations, and the results of an operation differed substantially from one machine to the

3

next. The burden of knowing numerical analysis and good numerical algorithms fell heavily
on the data analyst’s shoulders.

In the early 1980s the Institute of Electrical and Electronics Engineers (IEEE) developed a
standard for floating-point arithmetic [1]. To implement these standards, computer architects
of that time developed a floating-point architecture separate from that of the principal
processor — in effect, moving the floating-point issues from the level of machine-specific
definition of arithmetic to a common set of operations (an “instruction set”) whose output
could be strictly defined. Examples include the Motorola 6888x and the Intel 80x87 floating-
point processors (FPPs), which were designed in parallel with the 680x0 and 80x86 central
processors, respectively.

In later RISC-based architectures, floating point processes are tightly coupled to the cen-
tral instruction processor. The UltraSPARC-1 design incorporates an IEEE-compliant FPP
which performs all floating-point operations (including multiplies, divides, and square roots).
The PowerPC family also includes an integrated IEEE-compliant FPP. These processors il-
lustrate the increased role of hardware and machine organization. The FPPs are logically
external to the basic instruction processor. Therefore the computer design must include
channels for communication of operands and results, and must incorporate machine-level
protocols to guarantee that the mix of floating-point and non-floating-point instructions are
completed in the correct order. Today, many of these FPPs are part of the same integrated-
circuit package as the main instruction processor. This keeps the lines of communication
very short and achieves additional effective processor speed.

Parallel and Vector Architectures
The discussion above concerns the predominant computer architecture used by practic-

ing statisticians, one based on the sequential single processor. The notion that speed and
reliability could be enhanced by coupling multiple processors in a way that enabled them to
share work is an obvious extension, and one that has been explored actively since at least
the 1950s.

Vector computers include instructions (and hardware!) that make it possible to execute
a single instruction (such as an add) simultaneously on a vector of operands. In a standard
scalar computer, computing the inner product of two vectors x and y of length p requires a
loop within which the products xiyi are calculated. The time required is that of p multipli-
cations, together with the overhead of the loop. On a vector machine, a single instruction
would calculate all p products at once.

The highest performance scientific computers available since 1975 incorporate vector ar-
chitecture. Examples of early machines with vector capabilities include the CRAY-1 machine
and its successors from Cray Research and the CYBER-STAR computers from CDC.

Vector processors are special cases of parallel architecture, in which multiple processors
cooperatively perform computations. Vector processors are examples of machines which can
execute a single instruction on multiple data streams (SIMD computers). In computers with
these architectures, there is a single queue of instructions which are executed in parallel
(that is, simultaneously) by multiple processors, each of which has its own data memory
cache. Except for special purposes (such as array processing), the SIMD model is neither
sufficiently flexible nor economically competitive for general-purpose designs.

Computers with multiple processors having individual data memory, and which fetch and

4

execute their instructions independently (MIMD computers), are more flexible than SIMD
machines and can be built by taking regular scalar microprocessors and organizing them
to operate in parallel. Such multiprocessors are rapidly approaching the capabilities of the
fastest vector machines, and for many applications already have supplanted them.

Additional Reading and Summary
An elementary introduction to computer architecture is contained in Patterson and Hen-

nessy [4]; more advanced topics are covered in [5].
Thisted [6] gives an overview of floating-point arithmetic and the IEEE standard with a

view toward common statistical computations. Goldberg [2] presents an overview of floating-
point issues for computer scientists.

Patterson and Hennessy [5] contains a lengthy chapter on parallel computers based on
multiprocessors, as well as a short appendix on vector computers. Both sections contain
historical notes and detailed pointers to the literature for additional reading.

In the early days of digital computers, few useful computations could be accomplished
without a thorough understanding of the computer’s instruction set and a detailed knowledge
of its architecture. Advances in computer architecture, coupled with advances in program-
ming languages, compiler technology, operating systems, storage, and memory, have made
such specific knowledge of much reduced importance for producing high-quality scientific
work.

References
[1] Institute of Electrical and Electronics Engineers (IEEE). (1985). IEEE Standard for Bi-

nary Floating-Point Arithmetic (Standard 754-1985). IEEE, New York. Reprinted
in SIGPLAN Notices, 22(2), 5–48.

[2] Goldberg, D. (1991) “What every computer scientist should know about floating-point
arithmetic,” Computing Surveys, 23(1), 5–48.

[3] Patterson, David A., and Ditzel, D. R. (1980). “The case for the reduced instruction set
computer,” Computer Architecture News, 8(6), 25–33.

[4] Patterson, David A., and Hennessy, John L. (1994). Computer Organization and Design:
The Hardware/Software Interface. Morgan Kaufmann: San Francisco.

[5] Patterson, David A., and Hennessy, John L. (1996). Computer Architecture: A Quanti-
tative Approach, Second Edition. Morgan Kaufmann: San Francisco.

[6] Thisted, Ronald A. (1988). Elements of Statistical Computing: Numerical Computation.
Chapman and Hall: London.

5

