
Constraints on Analogical Mapping:
A Comparison of Three Models

By

Mark T. Keane

Department of Computer Science,

University of Dublin, Trinity College,

Dublin, IRELAND

Tim Ledgeway & Stuart Duff

School of Psychology

University of Wales College of Cardiff,

Cardiff, WALES

Correspondence and proofs to be sent to:

Dr. Mark Keane,

Cognitive Science Group,

Department of Computer Science,

Trinity College,

Dublin 2,

IRELAND

Running head: ANALOGICAL MAPPING

Keane, et al. Analogical Mapping

2

ABSTRACT

Three theories of analogy have been proposed which are supported by

computational models and data from experiments on human analogical abilities. In

this paper, we show how these theories can be unified within a common meta-

theoretical framework which distinguishes between levels of informational,

behavioural and hardware constraints. This framework makes clear the

distinctions between three computational models in the literature (the Analogical

Constraint Mapping Engine, the Structure-Mapping Engine and the Incremental

Analogy Machine) . The paper then goes on to develop a methodology for the

comparative testing of these models. In two different manipulations of an

analogical-mapping task we compare the results of computational experiments with

these models against the results of psychological experiments. In the first

experiment, we show that increasing the number of similar elements in two

analogical domains, decreases the response time taken to reach the correct mapping

for an analogy problem. In the second psychological experiment we find that the

order in which the elements of the two domains are presented has significant

facilitative effects on the ease of analogical mapping. Only one of the three models,

that model which embodies behavioural constraints, the Incremental Analogy

Machine, predicts both of these results. Finally, the immediate implications of

these results for analogy research are discussed, along with the wider implications

the research has for cognitive science methodology.

Keane, et al. Analogical Mapping

3

INTRODUCTION

Analogical thinking is central to problem solving, learning and creativity (see e.g.,

Gentner, 1983; Gick & Holyoak, 1980; Keane, 1988a; Koestler, 1964; Mayer &

Bromage, 1980). Since 1980, considerable psychological and computational

research has been carried out to elucidate this form of thought. Empirical evidence

has been gathered on subjects' analogical thinking in a variety of task situations and

different computational models of this behaviour have been specified. In these

respects, work on analogy is in an advanced state and has the potential to be an

exemplar for cognitive science theory and methodology.

In this paper, we make theoretical, methodological, and empirical contributions to

analogy research. First, we show that analogy theory can benefit from being

organized within a meta-theoretical framework. Frameworks, such as

Marr's�(1982), help us separate theoretical proposals about the basic competence

underlying a behaviour, from proposals about the performance of that behaviour

and the neurological substrate in which it is grounded. We show that apparently

diverse proposals on analogy can be unified productively within just such a

framework. In particular, we show that the framework helps us separate the

"competence" aspects of analogising from the "performance" aspects of the

behaviour.

Second, we develop a methodology for comparing various computational models.

In cognitive science, computational models have tended to be used in a minimalist

fashion. They are used to show that theoretical proposals are well-specified

enough to be programmed. Models which compete on computational, as well as

theoretical and empirical grounds, are seldom developed and even when such

models exist the competitive testing of them is a rare occurrence. Yet, clearly, this

sort of testing is what we should be doing with these models. In this paper, we

Keane, et al. Analogical Mapping

4

develop a basis for comparing three distinct models of analogical mapping and

perform computational experiments on these three models in specific task

situations.

Third, we report psychological experiments that parallel the tests carried out with

the computational models. The goal here is to compare the results of these

experiments against the outputs produced by the various models. The task

situations we examine are concerned with the effects of similarity and order of

presentation on analogical mapping. The results of these experiments contribute

new evidence to the corpus of empirical findings in the literature. But before going

into each of these areas in detail, let us first outline the current state of analogy

theory.

The Stages of Analogical Thinking

It has become clear in recent years that several sub-processes constitute analogical

thinking; representation, retrieval, mapping, adaptation and induction. In order to

solve a problem by analogy one must first represent the problem in some form. It

has been shown, using tests on experts and novices in a domain, that exactly how

an individual represents a problem affects the success of subsequent analogising

(see Novick, 1988). Then one must retrieve a useful analogous case to the

problem. For instance, faced with the problem of understanding the structure of

the atom one might retrieve a putative analogous case like the solar system

(see�e.g.,�Gentner & Landers, 1985; Gentner & Rattermann, in press; Holyoak &

Koh, 1987; Keane, 1987; Thagard, Holyoak, Nelson & Gochfeld, 1990; Wharton,

Holyoak, Downing, Lange & Wickens, 1991, 1992). Having done this retrieval,

one can then draw the analogy between the two domains -- the solar system and the

atom -- or perform an analogical mapping between them (see e.g., Burstein 1986;

Carbonell 1983; Gentner 1983, 1989; Gick & Holyoak 1980, 1983; Holyoak 1985;

Keane 1985, 1988a). An analogous solution may not always solve the problem

Keane, et al. Analogical Mapping

5

immediately; it may have to be validated or tested and adapted to the reality of the

problem situation (see Anderson & Thompson, 1989; Falkenhainer, 1987; 1990;

Keane, 1990; Novick & Holyoak, 1991). Finally, as a result of this mapping a

higher-order schema might be induced based on the two domains of information;

for example, a schema encoding the higher-order concept of central force systems

might be formed (see e.g., Gick & Holyoak, 1983).

The core sub-process in analogical thinking, the process that is unique to it, is

analogical mapping. It is also the process that has received the most attention in the

literature. Typically, when an analogical mapping is made two distinct

computations occur; first, the corresponding concepts in both domains are matched

and, second, a portion of the conceptual structure of one domain is transferred (or

carried over) into the other domain to form the basis of analogical inferences. For

example, when mapping the solar system domain to the atom domain you might

match the corresponding REVOLVES relations in both domains and transfer relations

of ATTRACTION from the solar system domain to apply in the atom domain.

In general, when people analogically map two domains they have to solve several

tricky computational problems. Even though two domains may have a one-to-one

correspondence between their parts, there may be a large number of ambiguous

matches -- many-to-one and one-to-many matches -- between their parts.

Psychologically, many of these problems only surface when we make the mapping

task difficult, as in the attribute-mapping problem from Holyoak & Thagard (1989;

see Table 1).

------------------------------- Insert Table 1 About Here -------------------------------

In this task, subjects are asked to say which things in list A correspond to which

things in list B (ignoring the meaning of the words). Essentially, subjects have to

discover a one-to-one mapping between all the individuals and attributes in list�A

Keane, et al. Analogical Mapping

6

and list B. This is quite a difficult task as a lot of ambiguous matches have to be

resolved. For example, smart may match hungry or friendly or frisky and the

correct match can only be determined by eliminating the inconsistent matches which

follow from all but one of these matches. Furthermore, even for quite small

domains such as these, there are over 700 possible matches. The unique one-to-

one mapping which solves the problem is to match Steve and Fido, Bill and Rover,

Tom and Blackie, smart and hungry, tall and friendly, and timid and frisky.

In this paper, we will concentrate on current computational models of the analogical

mapping stage of analogical thinking. The remainder of this paper is divided up into

six main parts. First, we show that current theory can be unified within a common

meta-theoretical framework. Second, we outline how the various models of

analogical mapping relate to this statement of analogy theory. Third, we describe

one of these models in some detail. Fourth, we identify a common measure for

comparing the predictions of these models. Fifth, using an attribute mapping task

similar the above example, we carry out two studies examining the factors affecting

analogical mapping. Each study has two parts to it; a computational experiment and

a corresponding psychological experiment. The computational experiment

determines the outputs the different models make for the target manipulation. The

psychological experiment tests these outputs against people's performance on the

task. The two studies examine the effects of similarity and of order on analogical

mapping, respectively. Finally, we will consider the immediate implications of

these findings for analogy research and the wider implications they have for

cognitive science.

META-THEORIES, THEORIES AND MODELS OF ANALOGICAL

MAPPING

In recent years, cognitive scientists have come to appreciate the need to stratify their

theoretical proposals within a meta-theoretical framework. Marr's (1982)

Keane, et al. Analogical Mapping

7

framework distinguishes between three levels of theory (i.e., the computational,

algorithmic, and hardware levels). In several areas of cognitive science, most

notably vision research, it has proved possible to elaborate theories at each of these

levels. However, many have been pessimistic about the feasibility of

computational-level theories of higher-thought processes (e.g., Fodor, 1983; Marr,

1982). Fortunately, this view has been countered, in general, by Anderson (1991)

and, specifically, in the areas of deduction (Johnson-Laird & Byrne, 1991) and

analogical thinking (Palmer, 1989).

Palmer (1989) has pointed out that any adequate theory of analogical mapping will

have to operate at several levels of description. At the highest level, one needs to

characterise the informational constraints implied by the task situation; this level is

concerned with describing what an analogy is; that is, what needs to be computed to

produce appropriate outputs given certain inputs (akin to Marr's computational

level). Below this level is one of behavioural constraints which have to capture the

empirical facts of people's observable analogical behaviour (Marr's algorithmic

level). Hence, this level should include constraints that predict when one analogy is

harder than another, the relative differences in processing times for different

analogies and the sorts of errors that people produce. Finally, there is the level of

hardware constraints which aim to capture the neurological primitives of analogical

thought (Marr's hardware level).

We make use of Palmer's meta-theoretical framework in this paper, but it should be

said that terminologically both frameworks have certain advantages and

disadvantages. Palmer's use of the term "informational" is more apt for our

purposes because it captures the notion that this level is concerned with determining

the information that needs to be computed to perform analogies. At the next level,

the labels "algorithmic" and "behavioural" are informative in different ways.

Algorithmic captures the idea that this level is concerned with how a computation is

Keane, et al. Analogical Mapping

8

carried out; it also conveys the idea that many different algorithms may instantiate a

given computational level description. By calling this level behavioural, we stress

the idea that this level of description is specifically concerned with observed

behaviour. At this level there are further constraints which reduce the space of

possible algorithms, instantiating the computational level, to those which produce

outputs that parallel the observed behaviour of people on a given task.

Accepting these caveats, we adopt Palmer's framework, although we organize

analogy theories quite differently within his framework (see also Keane, Ledgeway

& Duff, 1991). Having done this, the crux of our argument is that current theories

of analogy have discovered many informational constraints but say little about

behavioural and hardware constraints. Then, we attempt to improve this situation

by considering two possible behavioural constraints. Finally, we show how

current computational models of analogy instantiate these constraints.

Informational Constraints on Analogical Mapping

In the attribute-mapping problem there are several difficulties associated with

achieving optimal analogical mappings. As we saw earlier, there are many

ambiguous matches that need to be resolved and a large number of alternative

matches to choose between. Several informational constraints have been proposed

to solve these sorts of mapping difficulties (see e.g., Gentner, 1983; Holyoak &

Thagard, 1989).

The most important set of constraints are structural constraints. These constraints

are used to enforce a one-to-one mapping between the two domains (Falkenhainer,

Forbus & Gentner, 1986, 1989; Holyoak & Thagard, 1989). Structural constraints

rely on several techniques:

 • make matches only between entities of the same type; only attributes are

matched with attributes, objects with objects and two-place predicates with

Keane, et al. Analogical Mapping

9

two-place predicates. For example, in matching REVOLVES(A B) and

REVOLVES(C�D), the REVOLVES predicate would never be matched with the

object C. This reduces the total number of matches that need to be

considered (see Gentner, 1983; Holyoak & Thagard, 1989).

• exploit structural consistency; that is, if the propositions REVOLVES(A B)

and REVOLVES(C�D) match, then the arguments of both should also be

matched appropriately, A with C and B with�D. This is especially useful in

eliminating many-to-one and one-to-many matches (see Falkenhainer et al.,

1986, 1989).

• favour systematic sets of matches (Gentner's systematicity principle); that

is, if one has two alternative sets of matches then the mapping with the most

higher-order connectivity should be chosen. This constraint aids the choice

of an optimal mapping from among many alternative mappings.

These techniques have been shown to be very powerful. In many cases, structural

constraints alone can find the optimal mapping between two domains (as in the

above attribute-mapping example).

A similarity constraint can also be used to disambiguate between alternative

matches. When this constraint is applied only identical concepts are matched

between the two domains (Gentner, 1983) or, more loosely, semantically-similar

concepts are matched (Gick & Holyoak, 1980; Holyoak & Thagard, 1989).

Semantic similarity can be used to disambiguate matches; if one match in a set of

one-to-many matches is more similar than the others, it can be preferred.

Finally, there are pragmatic constraints (e.g.,�Holyoak, 1985; Holyoak &

Thagard, 1989; Keane, 1985). Again, these constraints may disambiguate a set of

matches. For example, in a certain analogical mapping situation, one match may be

pragmatically more important (or goal-relevant) than other alternatives and so it will

Keane, et al. Analogical Mapping

10

be preferred over these alternatives. We propose that many task demands provide

pragmatic constraints on analogical mapping. These task demands would include

the specific instructions given in a task (e.g., in the attribute mapping problem

subjects are asked to map all of the elements) or the way in which materials are

presented (e.g.,�the information may be presented in a certain sequence). These

task demands, which constitute the "pragmatics of the situation", have received

little research attention.

Informational constraints constitute a high-level specification of what makes a

particular comparison between two domains an analogical comparison. They

constitute a competence theory of analogical mapping (see also Gentner, 1989).

Computationally, they can be and have been implemented in a variety of different

models (as we will see later). As such, they capture the significant informational

aspects of analogical comparisons. However, this level of description on its own is

not sufficient to constitute a cognitive model (cf. Newell, 1990, for more general

arguments on this point). For an adequate cognitive model of analogical mapping

we need to elaborate the behavioural constraints on analogising. These behavioural

constraints reduce the set of possible algorithms which instantiate the informational

level theory. Indeed, the addition of behavioural level constraints should result in

algorithms that predict the detailed performance of subjects in analogical mapping

tasks.

Behavioural Constraints on Analogical Mapping

Informational constraints help to characterise significant aspects of analogical

competence. An adequate cognitive model of the analogical performance of human

thinkers also requires the elaboration of behavioural constraints. We have

elaborated two such constraints: working memory limitations and the effects of

background knowledge (see Keane, 1988b, 1990, 1991).

Keane, et al. Analogical Mapping

11

Working Memory Constraints

It is well known that working memory limits both problem solving and reasoning

performance (see e.g., Atwood & Polson, 1976; Johnson-Laird & Byrne, 1991).

There are at least two ways in which working memory limitations might influence

the nature and course of analogical thinking. First, working memory limitations

may result in information loss, and thus produce errors in analogising. When

working memory is overloaded, some critical part of the representation of a domain

may be lost or forgotten. This degradation in the inputs to the mapping process

could produce a corresponding degradation in outputs from it. In short, errors

would be found even when it was clear that subjects had the prerequisite mapping

competence. In support of this claim, Keane�(1990, 1991) has found that domains

which contain more conceptual information result in more mapping errors.

Second, the existence of working memory limitations is likely to influence the way

in which analogies are processed. Since working memory can be overloaded,

subjects should tend to use mapping techniques that reduce the processing load.

For instance, rather than considering all the possible matches and sets of matches

between two domains, they are more likely to select some small subset of these

possibilities (see Forbus & Oblinger, 1990; Keane, 1988b). These methods may

only be successful some of the time and, therefore, should result in systematic

errors or mis-analogies. These methods should also result in differential response

times for different analogies, depending on the ease with which the method can

resolve a particular mapping problem. Later, we present one model which

incorporates such techniques.

The Influence of Background Knowledge

Background knowledge has also been shown to have a significant influence in

problem solving and reasoning (e.g., Eysenck & Keane, 1990; Kotovsky, Hayes

Keane, et al. Analogical Mapping

12

& Simon, 1985; Johnson-Laird & Byrne, 1991). For example, in deductive

reasoning, background knowledge can facilitate or inhibit "correct" reasoning

depending on its relationship to the inferences to be made (Byrne, 1989; Cheng &

Holyoak, 1985). Similarly, in analogical thinking, Keane (1991) has shown that a

mapping task can be performed faster if the set of mappings required are consistent

with background knowledge, than if they are inconsistent or neutral with respect to

background knowledge. Apart from affecting the time-course of performance,

background knowledge may also be a source of errors in analogising when the

products of mapping conflict with background knowledge of a domain.

Summary

An analogy theory which just consists of informational constraints, and no

behavioural constraints, will not be an adequate cognitive model. Some facets of

analogical performance will not emerge from a purely informational analysis of task

situations. First, informational constraints will tell us little about the sources and

pattern of errors in subjects' performance. In contrast, when behavioural

constraints are added to an informational account, the way the model processes

analogies should produce various performance effects (such as errors). Second,

even when the outputs for a given analogy are predicted by informational

constraints, response times for the task may be accurately predicted only by a

model which includes behavioural constraints. Informational constraints deal with

the basic competence that produces certain normative outputs given certain inputs;

they are less adequate at predicting performance. Later, we report experimental

comparisons of a model which incorporates behavioural constraints with models

that omit them. But before we do this we need to consider briefly how the different

models instantiate the above constraints.

Keane, et al. Analogical Mapping

13

HOW MODELS INSTANTIATE CONSTRAINTS

We have specified analogy theory in terms of constraints which unify many diverse

statements by different theorists within a single framework (see Falkenhainer et al.,

1989; Gentner, 1983, 1989; Holyoak & Thagard, 1989; Keane, 1988a, 1990).

The diversity between the different views emerges from the way theorists have

instantiated these constraints in various computational models. We will concern

ourselves with three models that have addressed human analogising: the Structure

Mapping Engine (SME; Falkenhainer et al., 1986, 1989), the Analogical Constraint

Mapping Engine (ACME; Holyoak & Thagard, 1989), and the Incremental

Analogy Machine (IAM; Keane, 1988b, 1990; Keane & Brayshaw, 1988). As we

shall see, all three of these models implement most of the informational constraints

underlying analogical mapping. Indeed, many aspects of these constraints are now

well-understood and supported by empirical research. However, it is now clearly

time to attempt a more fine-grained analysis of analogical performance, to begin to

include various behavioural constraints and to explore these constraints empirically.

This is one of the main aims of the current paper.

Structure-Mapping Engine

Falkenhainer et al.'s (1986, 1989) Structure Mapping Engine�(SME) implements

both structural and similarity constraints in a serial way. SME finds all the legal

local matches between two domains and then combines these into alternative

interpretations of the comparison. SME is explicitly designed to construct all

possible maximal interpretations for a given comparison between two domains.

When SME has an appropriate set of match rules -- the analogy match rules -- it

instantiates Gentner's structure-mapping theory. However, it can be also be used

as a tool, when different match rule sets are used. When SME is run on the

attribute-mapping problem, with an appropriate set of match rules, it generates 32

alternative interpretations (see Appendix A). These are all the possible, maximal

Keane, et al. Analogical Mapping

14

interpretations that can be generated for the problem (made up from all the possible

matches). Among these alternative mappings is the optimal or "correct" one which

is indicated by the "goodness score" it receives. Of course, other less optimal

interpretations will also be included (e.g., one interpretation just includes a match

between bill-rover, tom-blackie and the attributes smart-friendly and tall-hungry).

As such, SME uses a "generate and select" technique, where all the possible

interpretations are generated and the best is selected from these using structural

constraints like systematicity; that is, the interpretation with the most higher-order

connectivity between its elements is selected. Gentner (1989) has proposed a

general architecture within which the Structure Mapping Engine can work. Forbus

& Oblinger (1990) have extended SME to implement some pragmatic constraints

and their "greedy merge algorithm" reduces the number of interpretations produced

to one (or a few) "best" interpretations.

Analogical Constraint Mapping Engine

Holyoak & Thagard's (1989) Analogical Constraint Mapping Engine (ACME) uses

parallel constraint satisfaction in an interactive network to find the optimal mapping

between two domains. It implements the structural, similarity and most pragmatic

constraints. ACME establishes a network of units or nodes. Each node represents

a legal match between two predicates. The excitatory and inhibitory connections

between these nodes implement the various constraints. So, for example, the

match between SMART(steve) and HUNGRY(fido) involves nodes representing the

matches between SMART=HUNGRY and steve=fido. To implement structural

consistency, there are excitatory links between the SMART=HUNGRY node and the

steve=fido node. To enforce a one-to-one mapping there are inhibitory links

between the S M A R T=H U N G R Y and S M A R T=FRIENDLY nodes, and the

SMART=HUNGRY and SMART=FRISKY nodes and also between the steve=fido

node and the steve=blackie and steve=rover nodes.

Keane, et al. Analogical Mapping

15

When the network has been constructed, it is run until the activations of the nodes

settle into a stable state. The nodes whose activation exceed a threshold correspond

to the optimal set of matches between the two domains. In one sense, ACME

produces just one mapping, a single optimal interpretation. Holyoak & Thagard's

(1989) measure of mapping difficulty is the number of cycles the network goes

through before it reaches the correct mapping. When ACME is run on the

attribute mapping problem it creates a network of 43 units with 440 links between

these units. With Holyoak & Thagard's parameter settings, we found that the

network goes through 72 cycles before it stabilises. It reaches the correct mapping

on its eight cycle (see Appendix�A).

The Incremental Analogy Machine

Keane & Brayshaw's (1988; Keane, 1988b, 1990, 1991b) Incremental Analogy

Machine�(IAM) implements all the informational and behavioural constraints

mentioned above using serial constraint-satisfaction. It generates a single, optimal

interpretation based on a small subset of the possible mappings between the two

domains. IAM builds up this mapping incrementally by selecting a small portion

of a base domain for mapping, mapping it and then moving on to map another

portion. Typically, it will construct a single mapping which will tend to be the

optimal interpretation. However, if it has to, IAM can consider several alternative

interpretations. Again, it deals with these alternatives incrementally, one after the

other. So, if the first mapping that is built is less than optimal, IAM will undo the

matches found and try an alternative mapping. For instance, depending on the

version of the attribute-mapping problem it is given, IAM will generate between

1�and 8 alternative mappings. In order to appreciate how IAM instantiates both

informational and behavioural constraints and how it differs from the other models

we will consider some of its main features in more detail.

Keane, et al. Analogical Mapping

16

THE INCREMENTAL ANALOGY MACHINE

IAM implements the informational constraints that have been used so successfully

in SME and ACME. However, its algorithm is quite different because it attempts

to take into account certain behavioural constraints. For the purposes of the present

paper, the working memory constraint is the most important (see later section for a

discussion of the background knowledge constraint). There are a number of

different ways that working memory limitations might be taken into account. One

option would be to have a storage structure -- a working memory -- with a limited

capacity. This would help to model some types of error production. However, at

present, IAM does not include a limited-capacity working memory. In contrast,

IAM uses an algorithm which is designed to run in a limited-capacity system;

namely, an algorithm which minimises the amount of processing required.

The IAM algorithm reduces the processing involved in analogical mapping by

incrementally mapping portions of a base domain, rather than mapping every

element in the domain. Thus, it builds up a single interpretation based on the

selected portion of the domain rather than many alternative interpretations. The

algorithm is designed to generate the optimal mapping between the two domains but

if the mapping it produces is not optimal then this mapping will be abandoned and

another constructed. We expect this algorithm to be a better approximation to

people's analogical behaviour; first, in its ability to generate complex analogical

interpretations quickly and accurately and, second, in having the facility to re-

consider a mapping made between two domains and to generate new alternatives.

Of course, the time the model takes to re-consider alternative mappings should

parallel the time people take to do this. In the following sub-sections, we outline

the IAM algorithm in more detail and show how it deals with some classic

examples from the literature.

------------------------------- Insert Table 2 About Here -------------------------------

Keane, et al. Analogical Mapping

17

The IAM Algorithm

Table 2 has a short, informal description of the IAM algorithm (see Appendix B for

pseudo code and also Keane, 1993). In essence, IAM forms a mapping from a

sub-set of the predicates/elements in a base domain rather than all the elements in

the base. �In particular, it selects that group of predicates which have the most

higher-order connectivity between its elements. Having selected this, so-called

seed group, it chooses an element from this group and finds the best match between

this element and all the elements in the target domain (called the seed match). The

seed match is used to grow the mapping of the other predicates in the seed group.

All the legal matches between the other elements of the seed-group and the target

domain are found and a unique one-to-one set of matches is formed. These

matches are found by using serial constraint satisfaction - applying pragmatic,

structural and similarity constraints. The seed match plays an important role in

elminiating ambiguities arising from matches made from other seed-group

elements. Depending on task demands and the success of this attempt to map the

seed group, IAM may backtrack to try an alternative seed match or go on to map

other groups of predicates in the base domain. Normally, however, a single

interpretation based on the seed group will suffice as the output for the analogical

comparison.

More detail on each of these stages is provided below with reference the solar-

system / atom analogy introduced by Gentner (1983; see Figure 1). Table 3

indicates some of the slot contents of IAM's working memory after this analogy

has been processed.

------------------------------- Insert Figure 1 About Here -------------------------------

Keane, et al. Analogical Mapping

18

Select Seed Group

The key to IAM's reduction of processing in analogical mapping is its selection of

one part of the base domain, the seed group, for mapping to the target. A group is

any inter-connected or systematic set of predicates in a domain. Most domains will

have several groups. For example, in the solar system / atom analogy the base

domain (i.e., the solar system) might contain the following predicates:

cause((and (weight-difference(sun, planet), attracts(sun, planet)),

revolve-around(planet, sun)) &

yellow(sun) &

enable (oxygen-atmosphere(planet), habitable(planet))

which make up three distinct groups:

Group 1: cause((and (weight-difference(sun, planet),

 attracts(sun, planet)),

 revolve-around(planet, sun))

Group 2: enable (oxygen-atmosphere(planet), habitable(planet))

Group 3: yellow(sun)

The first step in the IAM algorithm is to rank-order these groups so that the group

with, for example, the most higher-order, systematic structure receives the highest

ranking. The highest ranked group is then adopted as that portion of the base

domain used for mapping (i.e., the seed group). So, in the solar-system domain

Group 1 would be chosen as the seed group over Groups 2 and 3. While the

structural criterion is the main one used in choosing seed-groups other criteria are

also used; for instance, the number of predicates in the group, whether the group

contains pragmatically-important elements or whether it just happens to be the first

group encountered (see Appendix B for details).

Keane, et al. Analogical Mapping

19

------------------------------- Insert Table 3 About Here -------------------------------

Find Seed Match

Before the seed-group is mapped one special match, called the seed match, is

found. A seed match is found so that there is one match that is adopted

unambiguously before the rest of the seed group is matched. This seed match then

plays an important part in resolving the ambiguous mappings found for the

remaining elements in the seed group.

In order to find a seed-match, one must first select a seed element from among the

elements of the seed group. At present, IAM favours relational elements that take

multiple objects as seed elements (see Appendices A and B). All the legal matches

between this seed element and the elements in target domain, according to IAM's

match rules, are then found. IAM's match constraints are then applied to these

matches to disambiguate them (should this be required). So, pragmatic, similarity

and structural constraints are used to select one match as the seed match. At this

time, other alternative seed matches and candidate seed elements in the group are

noted for use in later backtracking (again, should they be required).

In the solar-system domain, Group 1 has been chosen as the seed group and

weight-difference(sun, planet) is chosen as the seed element, mainly because it a

relational element taking multiple objects (see Table 3). This element

unambiguously matches weight-difference(nucleus, electron) in the atom domain;

so, the seed match pairs weight-difference=weight-difference, sun=planet and

planet=electron. The object mappings established by this match can be used to

exclude relational mappings that violate these matches. Other alternative seed-

elements are noted, namely, revolve-around(planet, sun) and attracts(sun, planet)

which may be used later if this seed match fails to deliver an optimal mapping (see

Table 3).

Keane, et al. Analogical Mapping

20

Find Isomorphic Matches for Group

After selecting a seed match, all the legal matches between the remaining elements

in the seed-group and the target domain's elements are found, using IAM's match

rules. The match-rules allow relations to match if they have the same functor

and/or if they are of the same type (as in functions). The legal matches that result

will tend to be ambiguous, with a number of one-to-many mappings between base

and target elements. IAM then applies its match-constraints using serial constraint

satisfaction to resolve these ambiguities (see Appendix B for details). Hence,

structurally-consistent matches in an ambiguous match-set will be preferred over

ones that lack such consistency, pragmatically-important matches will be preferred

over those lacking such importance, and matches that are more similar will take

precedence over those that are less similar in an ambiguous set. �Amongst the

pragmatic constraints IAM has a favour-first constraint, which is applied when no

structural, pragmatic-importance or similarity constraints disambiguate a match-set;

it is this constraint which favours matches encountered before other matches (see

Study 2 later). This constraint satisfaction finds an isomorphic mapping between

the elements in the base, seed group and those of the target domain.

For example, this step will find the following matches between the seed-group in

the solar-system domain and the atom domain (see Table 3):

weight-difference(sun, planet) = weight-difference(nucleus, electron)

revolve-around(planet, sun) = revolve-around(electron, nucleus)

attracts(sun, planet) = attracts(nucleus, electron)

These relational matches support the following object mappings: planet=electron

and sun=nucleus.

Keane, et al. Analogical Mapping

21

Find Transfers for Group

Those elements in the base, seed-group which are not included in the one-to-one

matches found in the previous stage can now be transferred into the target domain

to constitute analogical transfers or analogical, candidate inferences. These are

inferences suggested by the mapping which hold by analogy in the target domain.

These transfers are an important source of new knowledge in the target.

So, for example, in the solar-system analogy the cause and the and relations in the

seed group have not been matched and can be transferred. These are transferred

resulting in the following mapping between the two domains (see also Table 3):

weight-difference(sun, planet) = weight-difference(nucleus, electron)

revolve-around(planet, sun) = revolve-around(electron, nucleus)

attracts(sun, planet) = attracts(nucleus, electron)

and(weight-difference, attracts) = *t*and(weight-difference, attracts)

cause(and-weight-diff-attracts, revolve-around) =

 *t*cause(and-weight-diff-attracts, revolve-around)

where the "*t*" indicates that this is a transferred element. In essence, this means

that we can now infer by analogy that the weight-difference and attraction between

the electron and the nucleus should cause the electron to revolve around the

nucleus.

Evaluate Group Mapping

After establishing a mapping for the seed group, IAM performs a minimal

evaluation on it. The evaluation criteria at this point could be quite complicated but

at present in the program they are very simple. IAM's evaluation function simply

looks at how many matches have been made relative to the number of predicates in

the seed group. If more than half of the predicates have been matched successfully

Keane, et al. Analogical Mapping

22

then the mapping is accepted as optimal, otherwise it is not optimal. This type of

evaluation has sufficed for all the domains used in our tests.

If the mapping of the seed group is not optimal, then IAM will begin to backtrack,

to re-consider the mapping. This type of "backtracking" is designed to approximate

subjects' phenomenal experience of trying one set of mappings and then another.

At first, IAM will consider alternative seed-matches if any exist. If there are

alternatives and they fail to deliver an optimal mapping then it will consider

alternative seed elements. If all of these mappings are not optimal, IAM may

consider another group as the seed group. So, IAM has considerable backtracking

potential. In practice this potential tends not to be used. However, the attribute

mapping problem is an exception. We shall see later, in some versions of this

problem a number of alternative seed matches have to be tried. We should also say

that IAM avoids "awkward loops" like oscillations; where one mapping is produced

and rejected (call it mapping-1) and then another mapping is produced and rejected

(mapping-2), before considering mapping-1 again. This sort of looping cannot

happen given the way in which IAM backtracks.

In the solar-system / atom example, the mapping found is evaluated as being

optimal. So, no backtracking occurs. If the mapping had not been optimal then

another seed element (e.g., attracts(sun, planet)) would have been tried, because

there are no alternative seed matches for the weight-difference element.

Find Other Group Mappings

Typically, IAM will halt after it has mapped the seed group. We believe that

usually the point of an analogy will be to develop a swift interpretation of the

analogy, which delivers some analogical inferences about the target. This is what

happens in the solar system / atom analogy. However, there are occasions when

task demands are different. If people are asked to map all the elements in the base

Keane, et al. Analogical Mapping

23

domain, then IAM will go on to map incrementally the other groups (this is

required in the attribute mapping problem, see also Appendix A). Similarly, when

people are asked to match up two domains in a relatively complete fashion they

should map as many of the groups in the base as they can. The mapping of other

groups iterates through the above steps (see Table 2). However, all these

subsequent mappings must conform to the mappings that have been established by

the first group mapping; in particular, they must be structurally consistent with it.

Summary

The IAM algorithm goes through six main stages in analogical mapping: it selects a

seed group and finds a seed match for that group, then it finds isomorphic matches

and transfers for that group, it will then evaluate that group mapping and finding

other group mappings if they are required. The IAM algorithm is specifically

designed to reduce the processing load involved in analogical mapping, in order to

unburden a limited-capacity working memory. It does this by (i) mapping just one

of the many possible groups in a base domain and (ii) incrementally undoing and

re-considering mappings if they are unsuccessful in the quest for the best mapping,

rather than computing all possible mappings and (iii) in mapping other groups

incrementally (if this is required). As such, the algorithm is shaped by one of the

important behavioural constraints in analogical mapping. �

IAM : Some Examples

IAM has been applied to the standard examples reported in the literature (see

Falkenhainer et al, 1989; Holyoak & Thagard, 1989; Keane & Brayshaw, 1988).

In general, its capabilities match those of SME and ACME (see Keane, 1993, for

full details on these tests). While there is insufficient space here to describe all of

these tests in detail, some representative examples from the literature are reported .

Keane, et al. Analogical Mapping

24

The representations for these analogies, as they were given to the program are

provided in Appendix C.

------------------------------- Insert Figure 2 About Here -------------------------------

The Water Flow / Heat Flow Analogy

Falkenhainer et al (1989) use the water flow / heat flow analogy as a key example

in presenting SME (from Buckley, 1979). This is a situation where water flow

from a beaker along a pipe to a vial is seen as being analogous to the flow of heat

from a cup of coffee along a bar to a ice-cube (see Figure 2 and Appendix C).

Table 4 shows the seed-group, seed-element and seed-match that are formed for

this analogy (see Table 4). The seed group chosen, because it is has the most

higher-order structure, is that group which encodes the causal relationship between

the pressure difference and the flow of the water along the pipe from one container

to the other. The flow(beaker, vial, water, pipe) predicate is chosen as the seed

element and the unambiguous seed match formed from it is between flow(beaker,

vial, water, pipe) and flow(coffee, ice-cube, heat, bar). The overall mapping

found by IAM for this analogy corresponds to that found by SME. The causal

relation holding between pressure-difference and flow in the water-flow domain is

transferred to hold between the temperature-difference and flow relations in the

heat-flow domain (see Table 4).

------------------------------- Insert Table 4 About Here -------------------------------

As in SME, IAM's match rules allow a function to match any other function. So,

potentially, there are many legal but ambiguous matches for all the functions

considered in both domains: for instance, pressure(beaker) = temperature(water),

pressure(beaker) = temperature(ice-cube). However, some of these matches are

never considered because they are not members of the chosen seed-group: for

instance, matches from diameter(beaker) and diameter(vial) are never considered.

Keane, et al. Analogical Mapping

25

The remaining ambiguity is resolved by structural constraints which remove

mappings that conflict with known mappings and which favour matches supported

by previous mappings.

------------------------------- Insert Figure 3 About Here -------------------------------

The SME Atom Solar-System Analogy

Falkenhainer et al (1989) have used a more complicated version of the solar-system

/ atom analogy, than the one presented above (see Figure 3 and Appendix C). In

this representation of the analogy there are more groups (with a greater degree of

higher-order structure) in both domains. This version of the analogy admits a

much greater potential for ambiguity as a result of the presence of many functions

and higher-order, causal structures in both domains. In terms of IAM's criteria the

best group is that which involves the predicates about the mass-difference,

attraction and their causal connection to revolution. Again, IAM makes the

mapping interpretation typically generated by people and SME, based on this

structure (see Table 5).

------------------------------- Insert Table 5 About Here -------------------------------

The Attribute Mapping Problem

The attribute mapping problem differs in several respects from the above mapping

examples. First, in all of the above examples the analogy is developed from the

first mapping considered. So, IAM never has to backtrack to re-consider the

mapping it has produced. However, typically, in the attribute-mapping problem

(shown in Table 1) several alternative mappings have to be considered. Second,

this analogy has specific task demands which do not arise in the previous analogies;

specifically, all the items in list A have to be mapped to all the items in list B. In

IAM, this means that all the groups in the base domain, not just the seed-group,

Keane, et al. Analogical Mapping

26

have to be mapped. Furthermore, the potential for mapping ambiguity in this

problem is much greater than in previous problems and this ambiguity is not easily

resolved.

 IAM divides up the base domain of the attribute mapping problem (i.e., list A) into

five, single-attribute groups. There are no criteria for preferring one of these

groups over another, so the first encountered is chosen as the seed group. This

group consists of a single element (i.e., tall(Bill)). Given the demands of the

problem, any element can match any other element so there are five alternative,

candidate matches for the seed-match: tall(Bill) = hungry(Fido), tall(Bill) =

friendly(Blackie), tall(Bill) = frisky(Blackie), tall(Bill) = hungry(Rover), and

tall(Bill) = friendly(Rover). However, none of the constraints can disambiguate

these matches, so the favour-first constraint simply takes the first encountered

tall(Bill) = hungry(Fido) and uses it as the seed-match. However, starting with this

seed match will not allow us to reach an isomorphic mapping between the two lists,

so when the mapping from this seed match fails, IAM will backtrack, re-consider

the mapping and use the next alternative seed match.

------------------------------- Insert Table 6 About Here -------------------------------

Table 6 shows the contents of some of the working memory slots after the mapping

has been achieved. Note that the alternative-seed-matches list, which would have

originally held all the matches from tall(Bill) listed above, has been reduced to nil,

as each of these alternatives has been tried as the seed match. For this version of

the attribute mapping problem, IAM has to re-consider the mapping made four

times, so it generates five alternative mappings for the problem before the correct

one is found. �This behaviour, as we shall see in the experiments reported here,

has important implications for predicting the time course of analogical mapping on

this problem.

Keane, et al. Analogical Mapping

27

Other Features of IAM

The above examples give some indication of how IAM works on particular

examples. The pseudo code description of the algorithm in Appendix B gives

more detail on how the program works. In this section, we review briefly some of

the other features of IAM; specifically, in comparison to its close relative, SME.

IAM Can be Used as a Tool

IAM, like SME, can be used as a tool to implement different types of comparison.

Specifically, there are four different sets of functions that can be re-configured in

IAM (see Appendix A, section 4, for the configuration used in this study):

• seed-group choice criteria - the functions which rank-order the groups in the

base domain, to choose the seed group

• seed-element choice criteria - the functions used to choose a seed-element

• match rules - the rules that determine what counts as a legal match between

items (i.e., elements or objects) in the base and target domains

• match constraints - the constraints that are used to disambiguate the matches

between the base and target domain

In all the examples reported above and in the current computational experiments the

seed-group choice criteria, seed-element choice criteria and the match constraints

were kept constant. For example, the match constraints were always the pragmatic,

similarity and structural constraints and they were always applied in the same order

(see Appendix A).

However, the match rules had to be varied for the attribute-mapping problem. In

this problem, we want to match attributes irrespective of their meaning, therefore

any relational element can be matched legally with any other relational element.

Keane, et al. Analogical Mapping

28

Normally, two relational elements would be required to have the same functor,

unless they were functions (see Appendix A).

Structural Constraints and Systematicity

IAM, like ACME, implements the structural constraints which were first realised in

SME. However, the way IAM computes such constraints differs considerably

from SME because of the nature of the IAM algorithm.

First, in the SME algorithm, the computation of isomorphic mappings is a hard

constraint. That is, this constraint is inviolate, mappings always have to preserve

isomorphism. In ACME, however, this constraint can be applied as a soft

constraint, merely as a pressure towards a one-to-one mapping, that can be relaxed

relative to other constraints. This is an important property for an analogy program

because people seem to show some tolerance for violating isomorphism (see Reed,

Ernst & Banerji, 1975; Holyoak & Thagard, 1989). In IAM, the computation of

isomorphic mappings by the structural constraint is also a hard constraint.

However, it might be feasible to develop a different structural constraint to use in

IAM that does not apply isomorphism in such a procrustean fashion.

Second, in SME, the computation of systematicity is one of the central

achievements. Each match is given an evidence score and the scores for the

matches in a given interpretation are combined in order to derive an overall

goodness score for a given mapping. The scheme which combines these match

scores implements systematicity and leads to the most systematic mapping being

given the highest goodness scores. IAM has no such weighting scheme and does

not assign evidence to local matches. In SME the computation of such evidence is

computationally very expensive, so IAM is less expensive and much simpler in this

respect. If IAM can be said to compute systematicity at all it does so in its

Keane, et al. Analogical Mapping

29

preference for groups with the higher-order connectivity. It might be more precise

to say that IAM computes one of the important conditions for systematicity.

Background Knowledge Constraint

In this paper, we concentrate on one of the two proposed behavioural constraints;

namely, the working memory constraint. The second constraint concerns the

influence of background knowledge on analogical mapping. �Our proposal is that

this influence enters into the formation and evaluation of analogical transfers.

Specifically, we believe that analogical transfers or candidate inferences can be

validated locally with respect to background knowledge. Keane (1985) has

pointed out that analogical transfers may suggest new objects in the target domain

(see also Falkenhainer et al., 1989). For example, in the general story / radiation

problem analogy (from Gick & Holyoak, 1980), people are given a story about a

general's attempt to attack a fortress by sending small groups of men along

different roads so that they converge on the fortress. This is designed to suggest

the analogical solution to Duncker's (1945) radiation problem of sending multiple,

low-intensity rays along a number of paths so that they converge on a tumour to

destroy it. Among the many analogical transfers here that people have to make, is

the transfer of the base object "roads" to become the target object "paths". But, the

concept path is not mentioned in the statement of the radiation problem; so this

concept has to be added to the target representation.

In SME, this sort of object transfer is handled by the use of skolemized objects in

the target domain. Falkenhainer (1987, 1990) has proposed a later verification

stage where an analogical solution is treated as a qualitative model of the physical

world which can be validated and refined. �This verification stage should find

appropriate objects for such skolemized entities. In IAM, we assume that

relational and object transfers are checked when transfers are being formed for a

mapping. So, there is a validation sub-routine in step 5 of the IAM algorithm

Keane, et al. Analogical Mapping

30

which checks candidate inferences against background knowledge of the target

domain (assuming that such knowledge is available). This proposal leads to the

prediction that if these transfers suggest something which is familiar with respect to

background knowledge then the mapping should be easier than if they suggest an

unfamiliar inference. Keane (1991) has tested this prediction and found evidence to

support it. For present purposes, it is sufficient to note that IAM has a method for

implementing the other behavioural constraint mentioned here.

COGNITIVE MODELS AND MEASURES FOR COMPARATIVE

COMPUTATIONAL TESTS

The core argument in this paper is that in order to develop cognitive models of

analogical mapping we need to take both informational and behavioural constraints

into account. As we have seen, SME and ACME essentially implement algorithms

based on informational constraints alone. However, this does not mean that SME

and ACME cannot make predictions about subjects' behaviour. Models based on

informational constraints can make behavioural predictions because these

constraints capture significant aspects of the task situation. For example,

Skorstadt, Falkenhainer & Gentner (1987) have shown that goodness scores

generated by SME for different comparisons exhibit relative differences that parallel

subjects' soundness ratings for the same comparisons. Similarly, Holyoak &

Thagard (1989) have shown that the number of cycles ACME goes through to

reach the correct mapping reflects the relative difficulty experienced by subjects on

the same analogies. However, we will show that finer-grained predictions can be

made from models which include behavioural constraints, as well.

In the remainder of this paper, we illustrate this point by comparing SME, ACME

and IAM in a number of task situations. However, in order to do this, we require a

common measure across the three models 1. The most obvious candidate is the

number of alternative mappings that a model computes. That is, the number of

Keane, et al. Analogical Mapping

31

alternative mapping interpretations of a comparison; what are called G-maps in

SME. In essence, Holyoak & Thagard (1989) use this measure in ACME when

they count the number of cycles to the correct global mapping between the elements

of two domains, because each cycle of ACME is really a state in which a putative

mapping interpretation has been formed. So, the number of cycles to the correct

mapping indicates the number of alternative mappings considered 2. Similarly, in

IAM, alternative mappings are easy to count by looking at the number of times the

program backtracks to consider either a new seed-match, a new seed-element or

another seed-group. It is also easy to use this measure in SME, because its

outputs consist of alternative mappings (i.e., G-maps) scored in terms of their

structural goodness.

However, the use of this measure in SME needs to come with a caveat. SME is

designed to generate all possible, maximal mappings in order to explore the space

of alternative mappings between two domains. Hence, for SME, this measure is

not intended to be a predictor of human behaviour. It is, however, useful to

employ SME in comparative tests for this very reason, because it indicates relative

to the other models, how many mappings are possible for a given analogy. We

have, therefore, retained this measure here for SME (later we discuss other possible

measures).

Assuming this common measure for assessing the outputs of the different models,

we can now look at the specific predictions that are made for two psychological

experiments. The first of these experiments examines the facilitative effects of

similarity on analogising, and the second examines order effects on analogical

processing. In both cases, we will first outline the general form of the experimental

manipulation and the rationale for it, then describe the computational experiment

carried out to generate predictions, and, finally, the psychological experiment used

to test these predictions.

Keane, et al. Analogical Mapping

32

STUDY 1: THE EFFECTS OF SIMILARITY

Many experiments have shown that varying the similarity of two analogues affects

the ease of analogical mapping (e.g., Gentner & Landers, 1985; Gentner &

Toupin, 1986; Keane, 1985; Ross, 1987). Holyoak & Koh (1987) have

distinguished between surface and structural similarity and have shown that the

latter has a significant effect on the production of correct mappings using various

story analogues to Duncker's radiation problem. Typically, this facilitation has

been measured by the frequency of correct mappings for different groups of

subjects. Differences in response times taken to perform a complex mapping, as a

function of similarity, have not been examined. Traditionally, response time is one

of the finest measures used in psychological research, yet to-date it has not been

used in analogy research.

In these experiments, we systematically manipulate the similarity constraint by

varying the number of predicates that are similar, while controlling the other

constraints. For instance, a modified version of the problem in which all the

attributes are similar should be easier:

A B

Bill is intelligent. Fido is clever.

Bill is tall. Blackie is big.

Tom is timid. Blackie is shy.

Tom is tall. Rover is clever.

Steve is intelligent. Rover is big.

To test the prediction that semantic similarity can facilitate response time on an

analogical mapping task, three different versions of the attribute-mapping problem

were used which had either no similar attributes, one set of similar attributes or

three sets of similar attributes (see Table 7).

Keane, et al. Analogical Mapping

33

------------------------------- Insert Table 7 About Here -------------------------------

Experiment 1A: Computational Tests of Similarity

The inputs to the computational models were predicate calculus representations of

the different versions of the problems. In the models which instantiate similarity

constraints, we included information about which attributes were similar to one

another (see Appendices A and C).

Method

Materials & Design. The materials used in the computational experiment were

predicate calculus representations of the problems shown in Table 7. The order of

attributes in each domain was randomised, with the constraint that attributes about

the same individual were kept together. Ten such randomly-ordered problems were

generated (the specific attributes and names in the problems were held constant).

Each of these ten problems were then modified to produce versions in which either

none of the attributes were similar, one attribute was similar or all the attributes

were similar in each list. The materials thus consisted of three sets of ten problems

used in three experimental conditions; the None-Similar, One-Similar and All-

Similar conditions.

Procedure. Each of the problems were run on the three different models; SME,

ACME and IAM (see Appendix A for implementation details). After running a

problem on a particular program the number of alternative mappings taken to reach

the correct solution were recorded.

------------------------------- Insert Figure 4 About Here -------------------------------

Keane, et al. Analogical Mapping

34

Results & Discussion

Figure 4 shows the mean number of alternative mappings generated by the different

models for the different conditions of the experiment. � The figure shows that both

ACME and IAM manifest a trend indicating that increasing similarity results in a

decreasing number of alternative mappings. The frequency of mappings gradually

decreases from the None-Similar condition, to the One-Similar and the All-Similar

conditions. SME shows us that there are many possible mappings for the different

versions of the problem and they do not differ across conditions.

For ACME, there is a reliable trend in the mean number of mappings, decreasing

from the None-Similar (M = 8, SD = 0) to the One-Similar (M = 4, SD�= 0) and

All-Similar (M = 3, SD = 0) conditions. For IAM there is also a reliable trend from

the None-Similar (M = 3.2, SD = 2.25), One-Similar (M = 2.4, SD = 1.43), and

All-Similar (M = 1.3, SD = .48) conditions [F(2, 18) = 6.88, p < .01]. SME

shows us that the complete set of alternative mappings for a problem, irrespective

of similarity, is 32. It also identifies the correct mapping for the problem as that

interpretation with the best score.

This computational experiment shows us that both ACME and IAM predict that as

the similarity between the domains in a problem increases the problem should be

easier to solve; with the All-Similar problems being easier than the One-Similar

problems, which in turn should be easier than the None-Similar problems. In

ACME these outputs are produced because similar matches receive more positive

activation and hence the network stabilises faster on the correct mapping. In IAM

the similarity between predicates helps to reduce the list of seed-matches and hence

the number of times that IAM backtracks to consider alternative seed-matches. For

the reasons outlined earlier, SME shows no differences between the conditions (see

conclusions section for alternative measures for SME). Let us now look at what

people actually do.

Keane, et al. Analogical Mapping

35

Experiment 1B: Psychological Tests of Similarity

We have seen the sorts of outputs produced by the computational tests in

Experiment 1A. Here we test these predictions against the evidence of a

psychological experiment which parallels the computational tests.

Method

Materials. We used three versions of the attribute-mapping problem (see Table�7).

Each version had two lists of attributes. In each list, there were three individuals

and three attributes; two individuals had two attributes and one individual had a

single attribute. The three versions differed in terms of the number of attributes that

were similar in both lists. In the None-Similar version none of the attributes were

semantically similar; in the One-Similar version one set of the attributes was

semantically similar ("intelligent" in list A and "clever" in list B); in the All-Similar

version, all the attributes in one list had a semantically-similar, parallel attribute in

the second list.

Procedure. Subjects were instructed in writing that their "task is to figure out what

in the left set corresponds to what in the right set of sentences". A single column

below list�A listed the names of the individuals and attributes in that list. Next to

each was a space for subjects to write the corresponding name or attribute from

list�B. The order of sentences in each list was randomised with the proviso that

sentences with attributes about the same individual were kept together.

Subjects were first shown the instructions and were asked to read them carefully.

They were then shown the problem and asked to solve it. A stop-watch was used

to time them from this point to when they solved the problem. If subjects produced

an incorrect answer they were told so and asked to continue solving the problem.

Only when the correct answer was produced was the clock stopped and the elapsed

time recorded.

Keane, et al. Analogical Mapping

36

Subjects & Design. Twenty-four undergraduates at the University of Wales

College of Cardiff took part voluntarily in the experiment. The experiment used a

between-subjects design and subjects were assigned randomly to one of the three

conditions; the None-Similar, One-Similar and All-Similar conditions. Three

subjects were dropped from the experiment before any data analysis because they

misunderstood the experimental instructions. Data analysis was carried out on the

remaining 21 subjects, who were equally distributed across the three conditions.

------------------------------- Insert Figure 5 About Here -------------------------------

Results & Discussion

The results corroborate the predictions of the ACME and IAM models. The

presence of semantic similarities between the elements of the two domains has an

important facilitating effect on the ease of analogical mapping (see Figure 5). The

elapsed time taken to solve the problem gradually decreased across the three

conditions, with subjects in the None-Similar Condition being the slowest

(M�=�210.9 secs.), those in the One-Similar Condition were faster (M = 164.9

secs.) and those in the All-Similar Condition the fastest [M�=�69.7�secs.;

F(2,�12)�=�12.022, p�< .01].

Previous tests of similarity effects have hinged largely on differences in the

frequency of correct solutions in analogical problem solving (cf. Gick & Holyoak,

1980; Keane, 1987). However, this study is the first demonstration that domains

which systematically differ in terms of their similarity give rise to systematically

differing response times.

Both ACME and IAM predict the similarity effects found, but an important

difference between these two models emerged in this study. In both Experiments

1A and 1B the order of attributes in the lists were randomised. In Experiment 1A,

the results from ACME in each of the conditions had no variance in the scores; that

Keane, et al. Analogical Mapping

37

is, in the None-Similar condition ACME always reached success in 8 cycles, in the

One-Similar condition it always succeeded in 4 cycles and it always took 3 cycles in

the All-Similar condition. This lack of variance within conditions indicates that the

random ordering of attributes had no effect on ACME's performance. In contrast,

IAM exhibited variance in all of the conditions indicating that the ordering of

attributes matters to IAM. We examined these order effects in Study 2.

STUDY 2: THE EFFECTS OF ORDER

A wide variety of task-demands may influence analogical processing (i.e., as other

manifestations of pragmatic constraints). These demands may include specific task

instructions and features of the task itself. In Study�2, we examine one such task

demand, the order in which domain information is presented to subjects. We

expect that it will affect the ease of analogical mapping. In Study 1, we randomised

the order of presentation of the attributes in both lists thus controlling for any order

effects. But, consider how order might make some versions of the attribute-

mapping problem easier to solve.

In the original version of the attribute-mapping problem (i.e., the None-Similar

version), each list has two individuals (e.g., Bill and Tom) with two attributes and

a remaining individual (i.e., Steve) who has just one attribute (See Table 1).

Matching up the single individuals in both lists (i.e., Steve and Fido) is the key to

achieving the isomorphic mapping. The presence of these single individuals with

one attribute (which we will call singletons) disambiguates the set of matches

between the two lists (this argument should also apply to the single attribute in both

lists). So, if the singletons are matched before the other attributes then the correct

mapping should be found more easily. We should, therefore, be able to test for the

effects of order by placing both of the singletons at the beginning of the lists rather

than at some other position in the lists, where they are less likely to be encountered

first. This prediction should follow from a model that is sensitive to such task

Keane, et al. Analogical Mapping

38

demands. In the next section, we consider the outputs of the various models on

this matter.

------------------------------- Insert Table 8 About Here -------------------------------

Experiment 2A: Computational Tests of Order

As before, we carried out computational experiments using the three models to

determine their outputs for different versions of the attribute-mapping problem.

Method

Materials, Design & Procedure. In the computational tests, two sets of ten

problems were generated; (i) the Singleton-First set contained problems in which

both of the singletons were at the beginning of the lists (and the remaining attributes

were randomly ordered as in Study 1) and (ii) the Singleton-Last set was made up

of problems in which the singleton in List A was always in the last position, while

the singleton in list B was in the first position (see Table 8). The experiment had

two conditions, the Singleton-First and Singleton-Last conditions. The ten

problems in the Singleton-First set and the ten problems in the Singleton-Last set

were run on each of the models and the number of alternative mappings produced

for each problem were noted.

------------------------------- Insert Figure 6 About Here -------------------------------

Results & Discussion

Figure 6 shows the mean number of alternative mappings generated by the different

computational models for the two sets of problems; the Singleton-First and

Singleton-Last problems. �For SME and ACME the products of the mapping

process were the same in both the Singleton-First and Singleton-Last conditions,

with M = 32 (for SME) and M = 8 (for ACME; SD = 0 for both). SME's outputs

Keane, et al. Analogical Mapping

39

show us, as we would expect, that the number of possible mappings does not

change for these different versions of the problem. ACME predicts that order has

no effect on the ease of analogical mapping.

In contrast, IAM predicts a marked difference between the two versions of the

problem. The Singleton-First problems were solved after just one mapping was

generated (M = 1, SD = 0), whereas the Singleton-Last problems on average

required more mappings to be produced (M = 2.9, SD = 1.29) and this difference

was statistically reliable on an independent t-test [t(18) = -4.67, p < 0.001].

This pattern of results is found in IAM because its algorithm is constrained by the

behavioural constraint of working-memory limitations. Specifically, it arises from

the way in which the algorithm deals with this task situation. First, as we saw

earlier, in the attribute mapping problem all the groups in list A are structurally

equal. This means that the choice of a seed group is based on the first group

encountered in the task. Second, the single element in the seed-group can be

matched legally with all five elements in the target domain; so it gives rise to five

alternative possible seed-matches. Again, the only criterion for choosing one of

these is to select the first encountered (the other constraints do not resolve this

ambiguity).

Both of these factors mean that, in the Singleton-First problems, the singleton in

list�A is chosen as the seed group and the match between it and the first element of

list B (i.e., its singleton) is chosen as the seed match. Since this match is the most

unambiguous match to start with in mapping the problem, the correct mapping is

found at once. In contrast, in the Singleton-Last problems a non-singleton

attribute is chosen as the seed group and the seed-match is between it and the

singleton in list B. This seed match will not deliver a single consistent mapping for

all the elements in the two domains, so at least one alternative seed-match (and

hence an alternative mapping) has to be considered. Normally, several alternative

Keane, et al. Analogical Mapping

40

seed matches will have to be considered for these Singleton-Last problems and

hence this class of problem takes longer than Singleton-First problems. In short,

the differences in these two conditions is predicted by IAM because of its

incremental mapping heuristic and the sensitivity of this heuristic to the pragmatic

constraints of task demands.

Experiment 2B: Psychological Tests of Order

In Experiment 2A we saw that ACME and IAM lead to different predictions about

the effects of order on analogical mapping. ACME predicts that order should have

no effect whereas IAM predicts an advantage for Singleton-First problems over

Singleton-Last problems. In this psychological experiment, we examined which of

these models best approximates the performance of people facing the same

manipulation.

Method

Subjects & Design. Twenty-three undergraduates at the University of Wales

College of Cardiff took part voluntarily in the experiment. The experiment

employed a between-subjects design and subjects were assigned at random to one

of the two conditions; Singleton-First or Singleton-Last conditions. Three subjects

were excluded from the experiment prior to data analysis because they

misunderstood the experimental instructions. Data analysis was carried out on the

remaining 20 subjects, who were equally distributed across the two conditions.

Materials & Procedure. The materials consisted of two None-Similar versions of

the attribute-matching problem (see Table 8). In the Singleton-First version the

singletons were at the top of both lists, while in the Singleton-Last version the

singleton in list A was in the last position, while the singleton in list B was in the

first position. The order of the remaining sentences was randomised as in

Experiment 1B.

Keane, et al. Analogical Mapping

41

The instructions were as in Experiment 1B, except for the introduction of the

following sentence: "The meaning of the words in the sentences is irrelevant".

Holyoak and Thagard (1989) used this instruction when they gave subjects the

original version of the problem. Subjects were shown the sheet containing the

instructions and problem, and were timed, as before.

------------------------------- Insert Figure 7 About Here -------------------------------

Results & Discussion

The results corroborate the predictions of the IAM model and run counter to the

those of the ACME model. The slight change in the ordering of the singletons has

a marked effect on the ease of analogical mapping (see Figure 7). Subjects in the

Singleton-First condition were almost twice as fast at solving the problem

(M�=�178.0 secs) compared to the Singleton-Last condition (M�=�363.1 secs)

and this difference was reliable [Mann-Whitney U�= 7, �p < .005, 1-tailed].

This result shows that the order in which the attributes are presented affects

subjects' latency to solve the problem. This result is predicted by IAM because of

its incremental mapping and sensitivity to pragmatic constraints.

CONCLUSIONS

Theoretical proposals on analogical mapping can be organized within a meta-

theoretical framework, which makes a distinction between informational and

behavioural constraints. The main informational constraints of importance are the

structural, similarity and pragmatic constraints. The primary behavioural

constraints are working memory limitations and background knowledge. The three

current models of analogical mapping instantiate these constraints to different

degrees. SME mainly instantiates the informational, structural and pragmatic

constraints. ACME and IAM model all three informational constraints. But IAM

Keane, et al. Analogical Mapping

42

alone models the behavioural constraints. In the present studies, we have seen that

a model which includes the behavioural constraints is better able to predict people's

performance.

In our first study, we saw the effects of similarity on the ease of analogical

mapping. A gradual improvement in performance as a function of the number of

similar elements between the two domains was reflected in the predictions of

ACME and IAM. In particular, we found that increasing the number of similar

attributes between two domains resulted in a parallel decrease in the time taken to

perform a difficult analogical mapping. Previous research has shown that similarity

affects the likelihood of success in analogical mapping, but latencies have never

been used as a measure (see e.g., Holyoak & Koh, 1987). The research evidence

is thus unanimous on the centrality of similarity constraints. In our second study,

we saw that the ACME model, which excludes behavioural constraints, fails to

predict the effects of order on analogical mapping. In contrast, IAM captured the

marked difference we found for versions of the problem which differ in the order in

which information is presented.

This research has implications for our understanding of analogical mapping, for the

conduct of analogy research and for cognitive science, in general. In this

concluding section we discuss briefly these implications.

Computational and Empirical Issues

The present work raises an number of issues for computational models of analogy

and for the course of future empirical work. From a computational perspective, the

natural question to ask is how existing models might be modified to include

behavioural constraints. Empirically, these studies suggest several lines of future

research and the possibility that a more fine-grained analysis of subject's analogical

behaviour is possible.

Keane, et al. Analogical Mapping

43

Can ACME and SME Capture these Phenomena ?

Can ACME and SME be naturally extended to encompass the phenomena found in

these studies ? We have seen that ACME makes appropriate predictions for

similarity manipulations in these experiments, but that it falls down on order

predictions. We find it hard to see how minor modifications to ACME would

improve this state of affairs. One option would be to assign extra activation to

match-units that are encountered earlier in the task. But, it is not clear whether this

would deliver the required performance. It would also make ACME much more

complex and unwieldy. The basic problem lies in the fact that ACME is inherently

parallel and the behaviour we see in these problems is inherently serial. In our

view, the best option would be to develop a hybrid model which imported aspects

of IAM into ACME. So, one could have a serial, IAM-like component in ACME

that would handle the choice of seed groups, seed elements and seed matches and

the backtracking between mappings. But, the mapping of a given group would be

handled as before by ACME's network.

It is somewhat harder to bring SME into contact with these findings. The first

problem is that, as we saw earlier, SME was designed to produce all possible,

maximal interpretations of an analogical comparison. So, SME was never intended

to make psychological predictions based on the number-of-alternative-mappings

measure. There are versions of SME which have been designed to produce fewer

alternative mappings. Forbus & Oblinger's (1990) greedy-merge algorithm

produces a single best interpretation and can be set to produce different numbers of

alternatives. However, greedy-merge is still not constrained in a psychological

fashion, as the number of alternative mappings produced is just set as one of the

parameters of the system. The algorithm should generate different frequencies of

mappings as a function of the nature of the mapping task. Such a solution would

Keane, et al. Analogical Mapping

44

appear to require a more radical modification of SME's control scheme (Forbus,

1993, considers this problem).

Another alternative is to use a different measure as a psychological predictor. One

possibility is to consider the number of root matches that SME generates for a

given mapping (suggested by Forbus, 1993). These root mappings are more basic

than the interpretations SME generates and might provide a better indicator of

performance differences. However, on the basis of our analysis of SME, it looks

like SME should always generate 25 such mappings for all the versions of the

attribute mapping problem used in these present studies. So, again, one faces the

problem of how SME might be modified so that the structure of the problem would

result in different numbers of root mappings being generated. As far as we can

see, the most feasible option would be to modify the control structure of SME, so

that some sub-set of root mappings are generated before another sub-set of

mappings (a step which would amount to making SME more like IAM).

Future Empirical Directions

The present experiments have important implications for the methodology and

substance of future empirical research. First, they bring us closer to subjects'

analogical behaviour. One of the major problems in analogy research has been

finding suitable measures of analogical performance. Traditionally, researchers

have used relatively coarse measures; frequency counts of success/failure in

problem solving or ratings of the soundness of analogies. �The experiments show

that response latencies can also be informative, that similarity affects the real-time

course of analogical performance. This is a more fine-grained measure of

analogical performance and combined with the increasing sophistication of our

computational models shows great promise.

Keane, et al. Analogical Mapping

45

Apart from adding to the measures used in analogy research, the work also

suggests a number of substantive research issues. We have shown that the

ordering of elements in a domain has marked effects on the ease of analogical

mapping (see Experiment 2B). This phenomenon is one of the effects of task

demands on analogising. In general, the role of task demands has been neglected

in analogy research. We have argued that they are best thought of as being a form

of pragmatic constraint. Clearly, much future work needs to be carried out on these

factors. For instance, one important question for future research concerns the

extent to which specific task demands recur across different situations. We have

shown that these effects hold in an attribute-mapping problem. This problem

involves an "odd" sort of analogy, involving only attributes and no relations,

although it allows us to uncover significant aspects of the mechanism which draws

analogies. One future question is whether similar results are to be found for

relational mappings. IAM predicts that such results should be found for problems

of the same form involving relations:

A B

Mark is beside Ronan. Lisa hugs Jenny.

Mark motivates Ronan. Laura employs Ruth.

Conor is beside Paul. Laura hugs Ruth.

Conor fears Paul. Mary sees Ali.

Joe motivates Steven. Mary employs Ali.

So, moving the singletons around in the above problem (i.e., Joe motivates Steven

and Lisa hugs Jenny) should have the same order effects we observed for the

attribute-mapping problem. Similarity effects should also be observed by using

sentences like "Joe cuddles Steven". Furthermore, relational-mapping problems

could be extended to examine other factors. For example, if we establish strong

Keane, et al. Analogical Mapping

46

causal relations between the relations in the non-singleton elements (e.g., Laura

employs Ruth and Laura pays Ruth), then this should change the predicate-

grouping in the domain, thus influencing the mappings people make and the relative

difficulty of these mappings. We are currently considering such issues.

Wider Implications for Analogy Research

Theories of analogical mapping have been converging for some time now. We

have tried to speed this convergence by showing how the different theoretical

constraints proposed can be related together in a meta-theoretical framework. From

this endeavour it becomes clear that the differences in computational models can be

traced directly to the various high-level constraints taken into account by the

models. Given this more unified state of affairs, we are presented with the

opportunity to modify our research strategy.

Rather than using the traditional falsification strategy for conducting research, a

collaborative, approximation strategy may be appropriate at this stage (see also

Newell, 1990). That is, given the state of theory in this area is makes more sense

to attempt to refine our models so that they become closer and closer

approximations to subjects' behaviour. As we have argued here, there are many

aspects of subjects' analogical performance, rather than their analogical

competence, which have not been given much attention (e.g., the sources of errors

and response times).

Implications for Cognitive Science Practice

The present research supports several propositions about the practice of cognitive

science. First, it shows that computational theories of higher-level cognitive

processes are possible. Second, it indicates that the statement of such theories as

sets of constraints (at an informational and behavioural level) is quite natural and

successful. Finally, it provides grounds for a cognitive science methodology

Keane, et al. Analogical Mapping

47

which promotes the more comparative use of computational models. In one sense,

to date, the use of computational models has been a bit half-hearted. Researchers

have tended to produce their models to demonstrate that their theories are well-

specified. Models are seldom taken "seriously" by being used to make comparative

predictions in specific situations. The present work shows that the use of models

in this way is feasible, even between models with widely differing architectures,

and gives rise to informative empirical tests of various theories. Therefore, we hope

that the present work will act as a paradigmatic case for the role of computational

models in cognitive science.

AUTHOR NOTES

IAM was originally developed in 1987, in Prolog, by Mark Keane and Mike

Brayshaw at the Open University (see Keane & Brayshaw, 1988). The present

version retains the spirit of the original program but the algorithm has been

completely revised and re-written in CommonLisp by Mark Keane. Tim Ledgeway

and Stuart Duff did Experiments 1B and 2B, respectively with Mark Keane. The

authors would like to thank Ruth Byrne and anonomous referees for helpful

comments on earlier drafts of this paper. Special thanks are due to Barry Smyth

(Hitachi Dublin Laboratory, TCD) who helped to write the pseudo code for the

IAM algorithm. We would also like to thank Dedre Gentner, Ken Forbus (now at

Northwestern University) and the Qualitative Reasoning Group at the University of

Illinois for helpful criticisms and a copy of SME and Paul Thagard (University of

Waterloo) for providing us with a copy of ACME and a lot of free advice about

how to run it.

Keane, et al. Analogical Mapping

48

FOOTNOTES

1 This is a strong comparative test, where we make all the models conform to

the same measure. A weaker alternative, is to allow each model to use its

own measure and then to look for a difference across different

tasks/materials for this model.

2 There is one further qualification that needs to be made about measuring

ACME's performance in this way. As Holyoak & Thagard (1989) point

out, the number of cycles the network goes through before reaching the

optimal mapping can change depending on the initial parameters adopted for

it. We have, therefore, tried to use parameters that maximise the speed with

which the network reaches the correct mapping (see Appendix A,

section�1).

Keane, et al. Analogical Mapping

49

REFERENCES

Anderson, J.R. (1991). Is human cognition adaptive�? Behavioural & Brain

Sciences, 14, 471-485.

Anderson, J.R. & Thompson, R. (1989). Use of analogy in a production system

architecture. In S. Vosniadou & A. Ortony (Eds.), Similarity and

Analogical Reasoning. (pp. 267-297). Cambridge: Cambridge University

Press.

Atwood, M.E., & Polson, P.G. (1976). A process model for water jug problems.

Cognitive Psychology, 8, 191-216.

Buckley, S. (1979). Sun Up to Sun Down. New York: McGraw-Hill.

Burstein, M.H. (1986). Concept formation by incremental analogical reasoning

and debugging. In R.S. Michalski, J.G. Carbonell & J.M. Mitchell

(Eds.), Machine Learning II: An Artificial Intelligence Approach . Los

Altos, Calif.: Kaufmann.

Byrne, R.M.J. (1989). Suppressing valid inferences with conditionals.

Cognition, 31, 61-83.

Carbonell, J.G. (1983). Learning by analogy: Formalizing and generalising plans

from past experience. In M.S. Michalski, J.G. Carbonell & T.M. Mitchell

(Eds.), Machine Learning: An Artificial Intelligence Approach. Amsterdam:

Springer-Verlag.

Cheng, P., & Holyoak, K.J. (1985). Pragmatic reasoning schemas. Cognitive

Psychology, 17, 391-416.

Duncker, K. (1945). On problem solving. Psychological Monographs, 58 (Whole

No. 270).

Eysenck, M.W., & Keane, M.T. (1990). Cognitive Psychology: A Student's

Handbook. London: Lawrence Erlbaum.

Falkenhainer, B. (1987). An examination of the third stage in the analogy process:

Verification-based analogical learning. In Proceedings of the Tenth

Keane, et al. Analogical Mapping

50

International Joint Conference on Artificial Intelligence. Los Altos: Morgan

Kaufmann.

Falkenhainer, B. (1990). A unified approach to explanation and theory formation.

In Shrager, J. & Langley, P. (Eds.), Computational Models of Scientific

Discovery and Theory Formation. San Mateo, CA: Morgan Kaufmann.

Falkenhainer, B., Forbus, K.D., & Gentner, D. (1986). Structure-mapping

engine. Proceedings of the Annual Conference of the American Association

for Artificial Intelligence.

Falkenhainer, B., Forbus, K.D., & Gentner, D. (1989). Structure-mapping

engine. Artificial Intelligence, 41, 1-63.

Forbus, K.D. (1983). Personal communication.

Forbus, K.D. & Oblinger, D. (1990). Making SME greedy and pragmatic.

Twelfth Annual Conference of the Cognitive Science Society. Hillsdale:

Erlbaum.

Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy.

Cognitive Science, 7 , 155-170.

Gentner, D. (1989). Mechanisms of analogical learning. In S. Vosniadou & A.

Ortony (Eds.), Similarity and Analogical Reasoning. (pp. 267-297).

Cambridge: Cambridge University Press.

Gentner, D., & Landers, R. (1985). Analogical reminding: A good match is hard to

find. Proceedings of the International Conference on Systems, Man and

Cybernetics , Tucson, Arizona, November.

Gentner, D. & Rattermann, M.J. (in press). The role of similarity in transfer.

Cognitive Psychology.

Gentner, D. & Toupin, C. (1986). Systematicity and surface similarity in the

development of analogy. Cognitive Science, 10, 227-300.

Gick, M.L., & Holyoak, K.J. (1980). Analogical problem solving. Cognitive

Psychology, 12, 306-355.

Keane, et al. Analogical Mapping

51

Gick, M.L., & Holyoak, K.J. (1983). Schema induction in analogical transfer.

Cognitive Psychology, 15, 1-38.

Holyoak, K.J. (1985). The pragmatics of analogical transfer. The Psychology of

Learning and Motivation, 19 , 59-87.

Holyoak, K.J. & Koh, K. (1987). Surface and structural similarity in analogical

transfer. Memory & Cognition , 15, 332-340.

Holyoak, K.J., & Thagard, P.R. (1989). Analogical mapping by constraint

satisfaction. Cognitive Science, 13, 295-355.

Johnson-Laird, P.N., & Byrne, R.M.J. (1991). Deduction. London: Lawrence

Erlbaum.

Keane, M.T. (1985). On drawing analogies when solving problems: A theory and

test of solution generation in an analogical problem solving task. British

Journal of Psychology, 76 , 449-458.

Keane, M.T. (1987). On retrieving analogues when solving problems. Quarterly

Journal of Experimental Psychology, 39A , 29-41.

Keane, M.T. (1988a). Analogical Problem Solving. Chichester: Ellis Horwood

(Simon & Schuster in N.America).

Keane, M. (1988b). Analogical Mechanisms. Artificial Intelligence Review, 2(4),

229-251.

Keane, M.T. (1990). Incremental analogising: Theory and model. In K.J.

Gilhooly, M.T. Keane, R. Logie & G. Erdos (Eds), Lines of Thinking:

Reflections on the Psychology of Thought. Vol. 1. Chichester: John Wiley.

Keane, M.T. (1991). The Role of Background Knowledge in Analogical Mapping.

CS-TCD-TR, May.

Keane, M.T. (1993). IAM àlà Lisp: Description and Examples. CS-TCD-TR,

July.

Keane, M.T., & Brayshaw, M. (1988). The Incremental Analogy Machine: A

computational model of analogy. In D. Sleeman (Ed.), Third European

Keane, et al. Analogical Mapping

52

Working Session on Machine Learning. London: Pitman/San Mateo, Calif.:

Morgan Kaufmann.

Keane, M.T, Ledgeway, T. & Duff, S. (1991). Constraints on analogical

mapping. In K.J. Hammond & D. Gentner (Eds.), Thirteenth Annual

Conference of the Cognitive Science Society. Hillsdale, NJ: Erlbaum.

Koestler, A. (1964). The Act of Creation . London: Picador.

Kotovsky, K., Hayes, J.R., & Simon, H.A. (1985). �Why are some problems�?:

Evidence form the Tower of Hanoi. Cognitive Psychology, 17, 248-294.

Marr, D. (1982). Vision. San Francisco: Freeman.

Mayer, R.E. & Bromage, B.K. (1980). Different recall protocols for technical texts

due to advance organizers. Journal of Educational Psychology , 72 , 209-

225.

Newell, A. (1990). Unified Theories of Cognition. Harvard: Harvard University

Press.

Novick, L.R. (1988). Analogical transfer, problem similarity, and expertise.

Journal of Experimental Psychology: Learning, Memory & Cognition, 14,

510-520.

Novick, L.R. & Holyoak, K.J. (1991). Mathematical problem solving by

analogy. Journal of Experimental Psychology: Learning, Memory and

Cognition, 17, 398-415.

Palmer, S.E. (1989). Levels of description in information processing theories of

analogy. In S. Vosniadou & A. Ortony (Eds.), Similarity and Analogical

Reasoning. (pp. 267-297). Cambridge: Cambridge University Press.

Ross, B.H. (1987). This is like that: The use of earlier problems and the

separation of similarity effects. Journal of Experimental Psychology:

Learning, Memory & Cognition, 13, 629-639.

Keane, et al. Analogical Mapping

53

Skorstadt, J., Falkenhainer, B., and Gentner, D. (1987) Analogical processing; A

simulation and empirical corroboration. Proceedings of AAAI'87.

American Association of Artificial Intelligence.

Thagard, P, Holyoak, K.J., Nelson, G. & Gochfeld, D. (1990). Analogue

retrieval by constraint satisfaction. Artificial Intelligence, 46, 259-310.

Wharton, C.M., Holyoak, K.J., Downing, P.E., Lange, T.E. & Wickens, T.D.

(1991). Retrieval competition in memory for analogies. In K.J.

Hammond & D. Gentner (Eds.),Thirteenth Annual Conference of the

Cognitive Science Society. Hillsdale, NJ: Erlbaum.

Wharton, C.M., Holyoak, K.J., Downing, P.E., Lange, T.E. & Wickens, T.D.

(1992). The story with reminding: Memory retrieval is influenced by

analogical similarity. In J.K. Kruschke (Ed.), Fourteenth Annual

Conference of the Cognitive Science Society. Hillsdale, NJ: Erlbaum.

Keane, et al. Analogical Mapping

54

APPENDIX A

Implementational Details of Models

In order to run the different models in a comparative experiment certain

implementational issues must be resolved about them. This appendix lays out the

different modifications and versions to ACME and SME used in Experiments 1A

and�2A.

1. ACME's Parameters in Tests

The critical measure we used for ACME was the number of cycles the network

went through before reaching the correct mapping. This varies depending on the

parameters adopted for the network. In Holyoak and Thagard's (1989) tests they

used a version of the Grossberg activation rule and the following parameter values:

 Decay: 0.1

 Excitation: 0.1

 Inhibition: -0.2

 Threshold for output from units: 0.0

 Minimum activation: -0.99

 Maximum activation: 0.99

 Asymptote criterion: 0.001

 Concept inhibition: -0.2

 Object inhibition: -0.2

 Proposition inhibition: -0.2

 Similarity of identical predicates: 0.1

Holyoak & Thagard also point out that decay rates from .001 to .2 work well with

all of the examples they reported in their paper, with higher values producing a

faster rate of settling. However, the rates of settling and of reaching the correct

Keane, et al. Analogical Mapping

55

mapping do not necessarily covary with changes in the decay value. At different

decay values, a network can settle at the same cycle, while the number of cycles to

success continue to drop. In line with Holyoak & Thagard's suggestions we

adopted the highest decay rate they used (i.e., .2) in order to be consistent with

their tests of other examples.

 Similarly, Holyoak & Thagard report that higher values of excitation lead to faster

settling (values from .01 to .12 work on all examples). But, excitation values

higher than .12 tend to be disruptive. In our tests, we found that increasing the

excitation values, when the decay rate was .2, did not have a significant impact on

reducing the number of cycles to the correct solution. So, throughout all the tests

reported in this paper the only change to Holyoak & Thagard's parameters was to

change the decay parameter to .2.

2. ACME's Similarity Tests Used Synonyms

In ACME's similarity component predicates can be treated using different degrees

of similarity; for example, they can be treated as identical (in which case they are

given a similarity score of 1) or as synonyms (in which case they get a score of .8).

In the tests we performed on similarity we assumed that all of our similar attributes

were synonyms. We examined a few variants on similarity scores, treating some

attributes as being identical rather than similar, but found that it did not change the

character of the results.

3. Using SME for Tests

In all our tests we used version 2E of SME. SME is run with its "free-for-all"

match rules which allows any predicate to be matched to any other predicate. When

SME is run with the "analogy" match rules, it is a strict instantiation of Gentner's

structure-mapping theory.

Keane, et al. Analogical Mapping

56

4. IAM used Configuration

IAM has a Rule Setup file which lays out all the criteria, match rule and match

constraints used during a particular comparison. So, different configurations of

criteria and rules can be loaded into IAM. The configuration for the attribute

mapping problem were as follows:

seed-gp-choice-criteria:

choose-pragmatic-groups

choose-highest-order-gp

choose-biggest-gp

choose-first-gp

seed-ele-choice-criteria:

remove-tainted-ele

remove-higher-order-ele

choose-pragmatic-ele

choose-most-args-ele

choose-first-ele)

match-rules:

both-objects?

both-elements? ; for other examples this would be

 ; both-objects? both-functions? same-type-&-functor?

match-constraints:

favour-pragmatic

favour-similar

favour-structural

favour-first

preferences: map all ; normally some

seed-only: nil ; normally t

Keane, et al. Analogical Mapping

57

APPENDIX B THE IAM ALGORITHM (PSEUDOCODE)*

__

initialise

Begin-Definition initialise

base-domain <-- base predicates and objects

target-domain <-- target predicates and objects

pragmatically-important-list <-- matches that are pragmatically-important

used-seed-elements <-- ()

known-mappings <-- ()

map-other-groups <-- () or True

End-Definition initialise

select-seed-group

Begin-Definition select-seed-group

base-group-list-0 <-- groups of inter-connected predicates in base-domain

base-group-list <-- sort base-group-list-0 in terms of pragmatic-importance,

higher-order connectivity and then by number of predicates

seed-group <-- pop (base-group-list)

End-Definition select-seed-group

Keane, et al. Analogical Mapping

58

find-seed-match

Begin-Definition find-seed-match

seed-element-list-1 <-- seed-group

seed-element-list-2 <-- remove elements of seed-element-list-1 that

appear in used-seed-elements

seed-element-list-3 <-- remove all higher-order elements (i.e., elements

that take elements as arguments) from seed-

element-list-2

seed-element-list-4 <-- sort seed-element-list-3 in ascending order of

pragmatic importance

seed-element-list <-- sort seed-element-list-4 in terms of number of

object arguments

seed-element <-- pop (seed-element-list)

poss-seed-matches <-- apply-match-rules(seed-element, target-domain)

seed-match <-- apply-constraints(poss-seed-matches)

push(seed-match, known-mappings)

End-Definition find-seed-match

find-isomorphic-group-matches

Begin-Definition find-isomorphic-group-matches

Keane, et al. Analogical Mapping

59

apply-match-rules(seed-group , target-domain)

Begin-Definition apply-match-rules

legal-matches <-- ()

For bi ε seed-group

For ti ε target-domain

If ∃M a match rule such that M(bi , ti) = True

then push ((bi ti) , legal-matches)

End-If

End-For

End-For

End-Definition apply-match-rules

find-ambiguous-matches(legal-matches)

Begin-Definition find-ambiguous-matches

ambiguous-matches-list <-- ()

For bi ε seed-group

ambiguous-matches-sublist <-- ()

For lmi ε legal-matches

If (bi = base-element(lmi) AND

 lmi ε ambiguous-matches-sublist)

then push (lmi, ambiguous-matches-sublist)

End-if

End-For

push(ambiguous-matches-sublist, ambiguous-matches-list)

End-For

End-Definition find-ambiguous-matches

Keane, et al. Analogical Mapping

60

apply-constraints(ambiguous-matches-list)

Begin-Definition apply-constraints

pragmatic-constraint(ambiguous-matches-list)

Begin-Definition pragmatic-constraint

ambiguous-matches-list-1 <-- ambiguous-matches-list

If ambiguous-matches-list = ()

 then ambiguous-matches-list-1

Else-if ambiguous-matches-list ≠ ()

then

For ambig-sublisti ε ambiguous-matches-list

For matchi ε ambig-sublisti

if matchi ε pragmatically-important-list

then push(matchi , known-mappings)

 remove(ambig-sublisti,ambiguous-matches-list-1)
End-if

End-for

End-for

End-if

End-Definition pragmatic-constraint

Keane, et al. Analogical Mapping

61

similarity-constraint(ambiguous-matches-list-1)

Begin-Definition similarity-constraint

ambiguous-matches-list-2 = ambiguous-matches-list-1

If ambiguous-matches-list-1 = ()

 then ambiguous-matches-list-2

Else-if ambiguous-matches-list-1 ≠ ()

For ambig-sublisti ε ambiguous-matches-list-1

ambig-sublist-1 <-- sort ambig-sublisti in terms of highest

match similarity score

best-match <-- pop(ambig-sublist-1)

best-score <-- similarity-score(best-match)

ambig-sublist-2 <-- all matches of ambig-sublist-1 with

similarity-score = best-score

if length(ambig-sublist-2) = 1

then push(best-match, known-mappings)

remove(ambig-sublisti, ambiguous-matches-list-2)

Else-if length(ambig-sublist-2) > 1

then remove(ambig-sublist, ambiguous-matches-list-2)

push(ambig-sublist-2, ambiguous-matches-list-2)
End-If

End-For
End-If

End-Definition similarity-constraint

Keane, et al. Analogical Mapping

62

structural-constraint(ambiguous-matches-list-2)

Begin-Definition structural-constraint

known-mappings-1 <-- known-mappings

If (ambiguous-matches-list-2 = () OR known-mappings=())

then ambiguous-matches-list-3 <-- ambiguous-matches-list-2

Else-if ambiguous-matches-list-2 ≠ ()

Until known-mappings = ()

Mapi <-- pop(known-mappings)

ambiguous-matches-list-3 <-- ()

; remove-conflicting-matches

For ambig-sublisti ε ambiguous-matches-list-2

For new-ambig-sublist <-- ()

For Mapi' ε ambig-sublisti

If not(conflicting(Mapi, Mapi')

then push(Mapi', new-ambig-sublist)

End-If

End-For

If length(new-ambig-sublist) = 1

then push (first (new-ambig-sublist),

known-mappings)

push (first (new-ambig-sublist),

known-mappings-1)

Else-if length(new-ambig-sublist) > 1

then push(new-ambig-sublist,

 ambiguous-matches-list-3)

End-If

End-For

End-For

Keane, et al. Analogical Mapping

63

; check-support

ambiguous-matches-list-4 <-- ambiguous-matches-list-3

known-mappings-1 <-- known-mappings

supported-matches <-- find-supported-matches(Mapi)

For Matchi ε supported-matches

For ambig-sublisti ε ambiguous-matches-list-3

If Matchi ε ambig-sublisti

then push(Matchi , known-mappings)

push(Matchi , known-mappings-1)

remove(ambig-sublisti, ambiguous-matches-list-4)

End-If

End-For

End-Until

unsupported-consistent-matches <-- ambiguous-matches-list-4

End-if

End-Definition structural-constraint

favour-first-constraint(ambiguous-matches-list-4)

Begin-Definition favour-first-constraint

For ambig-sublisti ε ambiguous-matches-list-4

push(first(ambig-sublisti, known-mappings-1)

End-For

End-Definition favour-first-constraint

End-Definition apply-constraints

End-Definition find-isomorphic-group-matches

Keane, et al. Analogical Mapping

64

find-group-transfers

Begin-Definition find-group-transfers

known-mappings-2 <-- known-mappings-1

For bi ε seed-group

For Mapi ε known-mappings-1

If bi ≠ base-element(Mapi)

then New-Map <-- form-transfer(bi)

push(New-Map, known-mappings-2)

End-if

End-For

End-For

End-Definition find-group-transfers

Keane, et al. Analogical Mapping

65

evaluate-group-mapping

Begin-Definition evaluate-group-mapping

half-no-of-base-elements <-- length(seed-group)/2

evaluation-of-mapping <-- ()

If length(known-mappings-2) >= half-no-of-base-elements

then evaluation-of-mapping <-- good

Else-if length(known-mappings-2) < half-no-of-base-elements

then evaluation-of-mapping <-- bad

End-if

If evaluation-of-mapping = good

then known-mappings-2

Else-if evaluation-of-mapping = bad

then if poss-seed-matches = ()

then if seed-element-list = ()

then if base-group-list = ()

then mapping-of-analogy-has-failed

Else-if base-group-list ≠ ()

; try another group as the seed-group

then known-mappings <-- ()

seed-group <-- pop(base-group-list)

find-seed-match

find-isomorphic-group-matches

find-group-transfers

evaluate-group-mapping

End-if

Else-if seed-element-list ≠ ()

; try another base-group element as the seed-element

then known-mappings <-- ()

Keane, et al. Analogical Mapping

66

push(seed-element, used-seed-elements)

seed-element <--
pop (seed-element-list)

poss-seed--matches <--
apply-match-rules(seed-element, target-domain)

seed-match <--
apply-constraints(poss-seed--matches)

find-isomorphic-group-matches

find-group-transfers

evaluate-group-mapping
End-if

Else-if poss-seed-matches ≠ ()

; try an alternative seed-match as the seed-match

then known-mappings <-- ()

seed-match <-- pop(poss-seed--matches)

find-isomorphic-group-matches

find-group-transfers

evaluate-group-mapping

End-if

End-if

End-if

End-Definition evaluate-group-mapping

f ind-other-group-mappings

Begin-Definition find-other-group-mapping

Keane, et al. Analogical Mapping

67

If map-other-groups = ()

then mappings-for-analogy <-- known-mappings-2

Else-if map-other-groups = True

then For groupi ε base-group-list

known-mappings <-- known-mappings-2

find-seed-match

find-isomorphic-group-matches

find-group-transfers

evaluate-group-mapping

End-For

End-If

End-Definition find-other-group-mapping

_

*In the above description of the IAM algorithm, the functions push, pop, first,

length, not are as they are defined in Common Lisp. The remove function is

slightly different, it takes an item and a list (which has been assigned to a variable)

and will update the variable to be the list with the item removed from it.

"<--" represents the assignment of a value to a variable; so, "x <-- y" will assign

the value y to the variable x.

Keane, et al. Analogical Mapping

68

Other Undefined Functions Mentioned in Algorithm Description

_

conflicting matches - this function takes two matches, match-1 and match-2 and

returns T is the two matches violate isomorphism (or if the object matches

they support violate isomorphism), otherwise it returns NIL

form-transfer - this function takes a set of mappings between two domains and

forms the candidate inferences or transfers suggested by the base

representation. Once these transfers are formed in the target they are linked

to the appropriate arguments they should have, which may be further

transfers or existing elements in the target.

_

Keane, et al. Analogical Mapping

69

APPENDIX C

Domain Representations for IAM Examples

The following are the representations of the different analogy examples reported in

this paper.

Example 1: Simple Atom-Solar System Analogy

 (domain solar-system

 (objects sun planet)

 (predicates

 (weight-difference (sun planet) weight-difference-ss)

 (attracts (sun planet) attracts-sun-planet)

 (revolve-around (planet sun) revolve-planet-sun)

 (and (weight-difference-ss attracts-sun-planet) weight-diff-&-attracts)

 (cause (weight-diff-&-attracts revolve-planet-sun)

cause-~weight-diff-&-attracts~-revolve)

 (yellow (sun) yellow-sun)

 (habitable (planet) habitable-planet)

 (oxygen-atmosphere (planet) oxygen-planet)

 (enable (oxygen-planet habitable-planet) enable-oxygen-habitation)))

 (domain atom

 (objects nucleus electron)

 (predicates

 (attracts (nucleus electron) attracts-nucleus-electron)

 (revolve-around (electron nucleus) revolve-electron-nucleus)

 (weight-difference (nucleus electron) weight-diff-atom)))

Keane, et al. Analogical Mapping

70

Example 2: Heat-flow Water-flow Analogy

 (domain simple-water-flow

 (objects water beaker vial pipe)

 (predicates

 (flow (beaker vial water pipe) water-flow)

 (pressure (beaker) pressure-beaker)

 (pressure (vial) pressure-vial)

 (greater (pressure-beaker pressure-vial) pressure-difference)

 (diameter (beaker) diameter-beaker)

 (diameter (vial) diameter-vial)

 (greater (diameter-beaker diameter-vial) diameter-difference)

 (cause (pressure-difference water-flow) cause-pressure-diff-flow)

 (flat-top (water) flat-top-water)

 (liquid (water) liquid-water)))

 (domain simple-heat-flow

 (objects coffee ice-cube bar heat)

 (predicates

 (flow (coffee ice-cube heat bar) heat-flow)

 (temperature (coffee) temp-coffee)

 (temperature (ice-cube) temp-ice-cube)

 (greater (temp-coffee temp-ice-cube) temp-difference)

 (flat-top (coffee) flat-top-coffee)

 (liquid (coffee) liquid-coffee)))

Keane, et al. Analogical Mapping

71

Example 3: SME Solar System / Atom Analogy

 (domain solar-system

 (objects sun planet)

 (predicates

 (mass (sun) mass-sun)

 (mass (planet) mass-planet)

 (greater (mass-sun mass-planet) mass-difference-ss)

 (attracts (sun planet) attracts-sun-planet)

 (revolve-around (planet sun) revolve-planet-sun)

 (and (mass-difference-ss attracts-sun-planet) mass-diff-&-attracts)

 (cause (mass-diff-&-attracts revolve-planet-sun)

 cause-~mass-diff-&-attraction~-revolve)

 (temperature (sun) temp-sun)

 (temperature (planet) temp-planet)

 (greater (temp-sun temp-planet) temp-difference)

 (gravity (mass-sun mass-planet) force-gravity)

 (cause (force-gravity attracts-sun-planet) cause-gravity-attracts)))

 (domain atom

 (objects nucleus electron)

 (predicates

 (mass (nucleus) mass-nucleus)

 (mass (electron) mass-electron)

 (greater (mass-nucleus mass-electron) mass-difference-a)

 (attracts (nucleus electron) attracts-nucleus-electron)

 (revolve-around (electron nucleus) revolve-electron-nucleus)

 (charge (electron) q-electron)

 (charge (nucleus) q-nucleus)

Keane, et al. Analogical Mapping

72

 (opposite-sign (q-electron q-nucleus) charge-difference)

 (cause (charge-difference attracts) cause-charge-diff-attracts)))

Example 4: Attribute Mapping Problem (none-similar)

 (map-all-groups)(map-abstract)

 (domain men (objects bill steve tom)

 (predicates

 (tall (bill) tall-bill)

 (smart (bill) smart-bill)

 (tall (tom) tall-tom)

 (timid (tom) timid-tom)

 (smart (steve) smart-steve)))

 (domain dogs (objects rover fido blackie)

 (predicates

 (hungry (fido) hungry-fido)

 (friendly (blackie) friendly-blackie)

 (frisky (blackie) frisky-blackie)

 (hungry (rover) hungry-rover)

 (friendly (rover) friendly-rover)))

Example 5: Attribute Mapping Problem (all-similar)

(map-all-groups)(map-abstract)

 (domain men (objects bill steve tom)

 (predicates

 (tall (tom) f4)

 (timid (tom) f5)

 (intelligent (bill) f3)

 (tall (bill) f2)

Keane, et al. Analogical Mapping

73

 (intelligent (steve) f1)))

 (domain dogs (objects rover fido blackie)

 (predicates

 (clever (rover) s4)

 (big (rover) s5)

 (clever (fido) s1)

 (shy (blackie) s3)

 (big (blackie) s2)))

 (similar ((f2 s2 .8) (f2 s5 .8) (f3 s1 .8) (f3 s4 .8) (f4 s2 .8) (f4 s5 .8) (f5 s3 .8) (f1 s1 .8) (f1 s4 .8)))

Keane, et al. Analogical Mapping

74

Table 1 The Attribute Mapping Problem (Holyoak & Thagard, 1989)

A B

Bill is tall. Fido is hungry.

Bill is smart. Blackie is friendly.

Tom is tall. Blackie is frisky.

Tom is timid. Rover is hungry.

Steve is smart. Rover is friendly.

Keane, et al. Analogical Mapping

75

Table 2 The IAM Algorithm

1. Select Seed Group - Rank-order groups of connected predicates in the base

domain and select the first in the list as the seed group

2. Find Seed Match - Find a seed match from a selected element in the seed group

and note alternative seed matches which may be possible from this element

3. Find Isomorphic Matches for Group - Find all the legal matches between the

elements of the selected group and the target domain and use serial constraint

satisfaction to find a one-to-one set of matches that disambiguates these

matches, using pragmatic, similarity and structural constraints

4. Find Transfers for Group - Add the transfers or candidate inferences supported

by the matches found

5. Evaluate Group Mapping - If the resultant mapping is evaluated as being good

then continue (step 6), otherwise try an alternative seed match (step 2), or

failing that try another group as the seed group (step 1)

6. Find Other Group Mappings - If task demands require many groups to be

mapped then incrementally map each of the other groups (performing steps 1-5

on each one), such that the mappings formed do not violate the mappings found

already (as dictated by the constraints); otherwise just return the mappings

found for the seed group

Keane, et al. Analogical Mapping

76

Table 3 Summary of IAM's Working Memory After Mapping the

Solar System / Atom Analogy

base: <DOMAIN-solar-system>

target: <DOMAIN-atom>

seed-group:

(<weight-difference-ss> <attracts-sun-planet> <revolve-planet-sun>

 <weight-diff-&-attracts> <cause-~weight-diff-&-attracts~-revolve>)

seed-group-alternatives:

((<habitable-planet> <oxygen-planet> <enable-oxygen-habitation>)

(<yellow-sun>))

seed-element: <weight-difference-ss>

seed-element-alternatives: (<attracts-sun-planet> <revolve-planet-sun>)

seed-match: (<weight-difference-ss> <weight-difference-atom>)

seed-match-alternatives: nil

mappings-found:

((<weight-diff-&-attracts> <*t*weight-diff-&-attracts>)

(<cause-~weight-diff-&-attracts~-revolve> <*t*cause-~weight-diff-&-attracts~-revolve>)

(<revolve-planet-sun> <revolve-electron-nucleus>)

(<attracts-sun-planet> <attracts-nucleus-electron>)

(<weight-difference-ss> <weight-difference-atom>))

obj-mappings-found:

((<planet24> <electron26>) (<sun23> <nucleus25>))

Keane, et al. Analogical Mapping

77

Table 4 Summary of IAM's Working Memory After Mapping the

Water Flow / Heat Flow Analogy

base: <DOMAIN-simple-water-flow>

target: <DOMAIN-simple-heat-flow>

seed-group:

(<water-flow> <pressure-beaker> <pressure-vial> <pressure-difference>

 <cause-pressure-diff-flow>)

seed-group-alternatives:

((<diameter-beaker> <diameter-vial> <diameter-difference>)

(<flat-top-water>)

 (<liquid-water>))

seed-element: <water-flow>

seed-element-alternatives: (<pressure-beaker> <pressure-vial>)

seed-match: (<water-flow> <heat-flow>)

seed-match-alternatives: nil

mappings-found:

((<cause-pressure-diff-flow> <*t*cause-pressure-diff-flow>)

(<pressure-difference> <temp-difference>)

(<pressure-vial><temp-ice-cube>)

(<pressure-beaker> <temp-coffee>)

(<water-flow> <heat-flow>))

obj-mappings-found:

((<pipe52> <bar55>)

(<water49> <heat56>)

(<vial51> <ice-cube54>)

(<beaker50> <coffee53>))

Keane, et al. Analogical Mapping

78

Table 5 Summary of IAM's Working Memory After Mapping the

SME Solar System / Atom Analogy

base: <DOMAIN-solar-system>

target: <DOMAIN-atom>

seed-group:

(<mass-sun> <mass-planet> <mass-difference-ss>

 <attracts-sun-planet> <revolve-planet-sun> <mass-diff-&-attracts>

 <cause-~mass-diff-&-attraction~-revolve>)

seed-group-alternatives:

((<mass-sun> <mass-planet> <attracts-sun-planet> <force-gravity>

<cause-gravity-attracts>)

(<temp-sun> <temp-planet> <temp-difference>))

seed-element: <attracts-sun-planet>

seed-element-alternatives:

(<revolve-planet-sun><mass-sun> <mass-planet>)

seed-match: (<attracts-sun-planet> <attracts-nucleus-electron>)

seed-match-alternatives: nil

mappings-found:

((<mass-diff-&-attracts> <*t*mass-diff-&-attracts>)

(<cause-~mass-diff-&-attraction~-revolve>

<*t*cause-~mass-diff-&-attraction~-revolve>)

(<revolve-planet-sun> <revolve-electron-nucleus>)

(<mass-difference-ss> <mass-difference-a>)

(<mass-sun> <mass-nucleus>)

(<mass-planet> <mass-electron>)

(<attracts-sun-planet> <attracts-nucleus-electron>))

obj-mappings-found:

((<planet6> <electron8>) (<sun5> <nucleus7>))

Keane, et al. Analogical Mapping

79

Table 6 Summary of IAM's Working Memory After Mapping the

Attribute-Mapping Problem

base: <DOMAIN-men>

target: <DOMAIN-dogs>

seed-group: (<tall-bill>)

seed-group-alternatives:

((<smart-bill>) (<tall-tom>) (<timid-tom>)

(<smart-steve>))

seed-element: <tall-bill>

seed-element-alternatives: nil

seed-match: (<tall-bill> <friendly-rover>)

seed-match-alternatives: nil 1

mappings-found:

((<smart-steve> <hungry-fido>)

(<timid-tom> <frisky-blackie>)

(<tall-tom> <friendly-blackie>)

(<smart-bill> <hungry-rover>)

(<tall-bill> <friendly-rover>))

obj-mappings-found:

((<steve64> <fido67>) (<tom65> <blackie68>) (<bill63> <rover66>))

note 1: Initially this slot has the following alternative seed-matches [(<tall-bill>

<hungry-fido>), (<tall-bill> <friendly-blackie>), (<tall-bill> <frisky-blackie>),

(<tall-bill> <hungry-rover>), (<tall-bill> <friendly-rover>)] but all of them fail to

generate a successful mapping, hence each is tried and rejected until (<tall-bill>

<friendly-rover>) is tried.

Keane, et al. Analogical Mapping

80

Table 7 The Versions of the Attribute-Mapping Problem Used in Study 1

 (Only B differed in each)

A B (None-Similar) B (One-Similar) B(All-Similar)

Bill is intelligent. Fido is hungry. Fido is clever. Fido is clever.

Bill is tall. Blackie is friendly. Blackie is friendly. Blackie is big.

Tom is timid. Blackie is frisky. Blackie is frisky. Blackie is shy.

Tom is tall. Rover is hungry. Rover is clever. Rover is clever.

Steve is intelligent. Rover is friendly. Rover is friendly. Rover is shy.

Keane, et al. Analogical Mapping

81

Table 8 The Two Versions of the Attribute-Mapping Problem Used

in Study 2 (*a singleton)

 Singleton-First Singleton-Last

A B A B

Steve is smart.* Fido is hungry.* Bill is smart. Fido is hungry.*

Bill is tall. Blackie is friendly. Bill is tall. Blackie is friendly.

Bill is smart. Blackie is frisky. Tom is timid. Blackie is frisky.

Tom is tall. Rover is hungry. Tom is tall. Rover is hungry.

Tom is timid. Rover is friendly. Steve is smart.* Rover is friendly.

FIGURE CAPTIONS

Figure 1 Simple Version of the Solar System and Atom Domains

Figure 2 The Water Flow and Heat Flow Domains

Figure 3 SME Version of the Solar System and Atom Domains

Figure 4 The Mean Number of Mappings Produced by SME, ACME and

IAM for the Different Versions of the Attribute-Mapping Problem in

Experiment�1A

Keane, et al. Analogical Mapping

82

Figure 5 The Mean Solution Times Taken to Solve the Attribute-Mapping

Problem in the Conditions of Experiment�1B

Figure 6 The Mean Number of Mappings Produced by SME, ACME and

IAM for the Different Versions of the Attribute-Mapping Problem in

Experiment�2A

Figure 7 The Mean Solution Times Taken to Solve the Attribute-Mapping

Problem in the Conditions of Experiment�2B

Keane, et al. Analogical Mapping

83

and

weight-difference attracts

cause

revolve-around

yellow
oxygen-atmosphere

enable

habitable

sun planet

planet
sun

planet

sun planet

planet sun

Solar System

weight-difference attracts revolve-around

nucleus electron

Atom

electron electronnucleus nucleus

Keane, et al. Analogical Mapping

84

cause

flow

liquid

pressure

greater

pressure

beaker

water

vial

Water Flow

Heat Flow

flat-top

water

beaker vial water pipe

diameter

greater

diameter

beaker vial

flow

liquid

temperature

greater

temperature

coffee
coffee

ice-cube

flat-top

coffee

coffee ice-
cube

heat bar

Keane, et al. Analogical Mapping

85

and

greaterattracts

cause

revolve-around

mass mass

sun planet

sun planet

planet sun

SME - Solar System

attracts

SME - Atom

electronnucleus

greater

temperature temperature

sun planet

cause

gravity

mass mass

sun planet

opposite-sign

charge charge

nucleus electron

revolve-around

electron nucleus

greater

mass mass

nucleus electron

cause

Keane, et al. Analogical Mapping

86

SME ACME IAM
0

10

20

30 None Similar
One Similar
All Similar

M
e
a
n

N

o
.

o
f

M

a
p
p
in

g
s

Keane, et al. Analogical Mapping

87

None Similar One Similar All Similar
0

100

200

Conditions

M
e
a
n

S
e
c
o
n
d
s

Keane, et al. Analogical Mapping

88

SME ACME IAM
0

10

20

30
Singleton First
Singleton Last

M
e
a
n

N

o
.

o
f

M

a
p
p
in

g
s

Keane, et al. Analogical Mapping

89

Singleton First Singleton Last
0

100

200

300

400

Conditions

M
e
a
n

N

o
.

o
f

S
e
c
o
n
d
s

